Manual de instrucciones Ceilómetro Lufft CHM 15k

Índice

1	Ind	caciones generales	4
	1.1	Significado de los símbolos	5
2	Seg	uridad	5
	2.1	Normas y directivas	5
	2.2	Indicaciones de seguridad sobre el sistema láser	5
	2.3	Requisitos que debe cumplir el personal	5
	2.4	Indicaciones de seguridad para el transporte, instalación, puesta en servicio y limpieza	5
	2.5	Representación de las advertencias	6
	2.5.1	Descripción de las señales de peligro	6
	2.5.2	Significado de las indicaciones de peligro	6
	2.6	Distintivos de seguridad en el CHM 15k	7
	2.7	Uso debido	7
3	Date	ostécnicos	8
	3.1	Información de pedido	8
	3.2	Ficha técnica	8
4	Des	cripción técnica	.11
	4.1	Componentes del CHM 15k	.11
	4.2	Unidades funcionales del armario interior	.12
	4.2.1	Esquema funcional	.12
	4.2.2	Control de funciones y estado del equipo	.13
5	Tra	nsporte y volumen de suministro	.14
6	Inst	alación	.15
	6.1	Instalación del CHM 15k	.15
	6.1.1	Trabajos preparatorios	.15
	6.1.2	Instalación sobre la cimentación	.16
	6.2	Instalación eléctrica	.18
7	Pue	sta en servicio y puesta fuera de servicio	.22
	7.1	Puesta en servicio con la conexión RS485	.22
	7.2	Puesta en servicio con la conexión LAN	.23
	7.3	Puesta fuera de servicio	.24
	7.4	Eliminación de residuos	.25
8	Con	nunicación a través de RS485 y Ethernet	.26
	8.1	Lista de los parámetros configurables	.26
	8.2	Configuración del equipo con RS485	.31
	8.2.1	Consultar un parámetro	.31
	8.2.2	Establecer un parámetro	.32
	8.2.3	Cambio de la tasa de baudios	.32
	8.2.4	Reinicio del sistema embebido Linux/configuración de fábrica	.33
	8.2.5	Cambio de la configuración de tiempos	.33
	8.3	Consulta de datos RS485	.34
	8.3.1	Modo de polling	.34
	8.3.2	Modo de salida automática	.34
	8.3.3	Telegrama de datos estándar	.35
	8.3.4	Telegrama de datos ampliado	.36
	8.3.5	Telegrama de datos en bruto	.39
	8.3.6	Otros telegramas de datos	.41

8.4	Estructura del formato NetCDF	41			
8.4.1	Generalidades	41			
8.4.2	Principios básicos	41			
8.4.3	Nombres de archivo	42			
8.4.4	Estructura del formato	42			
8.5	Código de estados	45			
8.5.1	Códigos de estado escalables	46			
8.6	Actualizar firmware	49			
8.7	Comunicación a través de la interfaz de web/Ethernet	49			
8.7.1	Resumen del equipo y derechos de acceso (pestaña Device)	49			
8.7.2	Acceso a los datos de medición (archivos NetCDF, viewer)	50			
8.7.3	Configuración del CHM 15k (pestaña Config)	51			
8.7.4	Mensajes de estado y de error (Process Warnings)	54			
8.7.5	Time server	55			
8.8	Modo AFD	55			
8.9	Telegrama por Ethernet	57			
8.10	Herramientas de archivos NetCDF	57			
9 Eva	luación de datos / Sky Condition Algorithm (SCA)	58			
9.1	Teledetección por láser	58			
9.2	Preparación de los datos de medición	58			
9.3	Base de las nubes y profundidad de penetración	59			
9.4	Profundidad de penetración en las nubes	59			
9.5	Parámetros de evaluación de datos	60			
9.6	Determinación del rango de detección máximo (MXD)	60			
9.7	Visibilidad vertical óptica (VOR)	60			
9.8	Precipitación y niebla	61			
9.9	Altura de la capa de mezcla	61			
9.10	Grado de cobertura (BCC/TCC)	61			
9.11	Sky Condition Index (SCI)	64			
10 Ins	trucciones de limpieza, mantenimiento y service	65			
10.1	Limpieza	65			
10.2	Intervalos de mantenimiento y tareas	67			
11 Ane	exo 69				
11.1	Version de hardware del CHM 15k				
11.2	Version de software del CHM 15k				
12 Ind	2 Indice de figuras				
13 Ind	13 Indice de tablas				

1 Indicaciones generales

Este manual de instrucciones es parte integrante del equipo. Debe conservarse siempre cerca del equipo para poder consultarlo rápidamente en caso necesario.

Todas las personas responsables del equipo y que trabajan con el equipo deben entender y respetar todos los puntos de este manual de instrucciones, especialmente el capítulo de "Seguridad".

Cierre de la edición: julio de 2019

Número de documentación: 8350.MEP

Este manual de instrucciones es válido para las siguientes variantes del equipo: CHM 15k con los códigos de referencia:

> 8350.00 8350.10 8350.01 8350.B050 8350.01-BW 8350.03

Fabricante

G. Lufft Mess- und Regeltechnik GmbH Gutenbergstraße 20 70736 Fellbach, Alemania Teléfono +49 711 518 22 – 831 Fax +49 711 518 22 – 41 E-mail <u>service@lufft.de</u>

Fecha	Edición	Explicaciones	
julio de 2015	R06	revisión de todos los capítulos	
julio de 2016	R07	corrección de errores menores	
noviembre de 2016	R09	firmware 0.743, revisión de todos los capítulos	
mayo de 2017	R10	actualización del tema seguridad del láser	
julio de 2019	R13	revisión exhaustiva, especialmente en cuanto a las indicaciones de seguridad	

Copyright

© 2019

Este manual está sujeto a derechos de propiedad intelectual. Prohibida la reproducción por cualquier procedimiento (fotografía, fotocopiado, microfilmación u otros) y la modificación o edición por medios electrónicos de cualquier parte de este manual sin el consentimiento previo por escrito de G. Lufft GmbH. Cualquier incumplimiento de la anterior disposición podrá ser perseguido por la vía penal.

Este manual se ha elaborado con la debida diligencia. No se asume ninguna responsabilidad por los daños derivados de la no observancia de la información contenida en este manual de instrucciones.

1.1 Significado de los símbolos

Observaciones que aseguran el funcionamiento sin dificultades del equipo.

Acción requerida

2 Seguridad

2.1 Normas y directivas

El equipo se ha diseñado conforme a los principios técnicos y de seguridad generalmente reconocidos y se fabrica en serie sin modificaciones. Las normas aplicadas están recogidas en la declaración de conformidad actualizada y vigente. Las declaraciones de conformidad se pueden descargar de nuestra página web:

https://www.lufft.com/products/cloud-height-snow-depth-sensors-288/ceilometer-chm-15k-nimbus-2300/

2.2 Indicaciones de seguridad sobre el sistema láser

El ceilómetro CHM 15k es un producto láser de la clase 1M de acuerdo con IEC 60825-1:2014-06. Corresponde a la norma 21 CFR 1040.10, salvo las desviaciones según Laser Notice No. 50 del 24 de junio de 2007. El ceilómetro CHM 15k emite una radiación láser invisible (1064 nm) de baja divergencia (<0.5 mrad) y un diámetro del haz de 90 mm. En la parte delantera del equipo se encuentra un rótulo de advertencia (ver el apartado 2.6).

La radiación láser de la clase 1M es segura en las condiciones de funcionamiento normales, siempre y cuando no se observe con ópticas telescópicas. El ceilómetro solo se puede utilizar en un ámbito exterior protegido. Para su utilización se deben respetar las siguientes indicaciones de seguridad:

- En ningún caso se debe observar el haz láser con instrumentos ópticos, especialmente prismáticos
- No mirar directamente al haz láser
- No utilizar el sensor cuando la puerta del armario interior está abierta
- El sensor no se puede utilizar en orientación horizontal (ángulo de inclinación máximo 20º)
- No pueden haber materiales reflectantes en la trayectoria del haz láser.

La radiación que emite el ceilómetro CHM 15k se genera mediante un láser de la clase 3B integrado en el equipo. Incluso una exposición muy breve a la radiación láser de la clase 3B puede provocar lesiones en los ojos y en la piel. El mantenimiento y el service del sensor sólo podrán ser realizados por personal debidamente formado. En ningún caso se debe retirar el cabezal láser de la unidad de medición óptica.

2.3 Requisitos que debe cumplir el personal

- Solo personal formado e instruido en las normas de seguridad debe instalar y poner en servicio el CHM 15k. La conexión eléctrica del CHM 15k debe correr siempre a cargo de un técnico electricista.
- Los trabajos de mantenimiento y configuración en el CHM 15k solo pueden ser realizados por el personal de service de G. Lufft GmbH, o bien por personal autorizado y formado del cliente.
- Las personas encargadas de la instalación y puesta en servicio del CHM 15k deben haber leído y comprendido todo el manual de instrucciones.
- El personal que realice cualquier trabajo en el equipo no puede estar fatigado ni bajo los efectos de alcohol, medicamentos o estupefacientes. El personal no puede tener limitaciones físicas que mermen temporal o permanentemente su capacidad de atención o juicio.

2.4 Indicaciones de seguridad para el transporte, instalación, puesta en servicio y limpieza

• El CHM 15k solo se puede cargar y transportar en su embalaje y en posición de transporte (ver Figura 5), empleando los medios de elevación y transporte adecuados.

- El CHM 15k embalado debe asegurarse adecuadamente en el medio de transporte contra el desplazamiento, los golpes e impactos mediante cintas de amarre, por ejemplo.
- Si el CHM 15k no se monta inmediatamente, el equipo debe almacenarse suficientemente asegurado y protegido contra las acciones externas.
- Para instalar el CHM 15k se requieren al menos dos personas.
- Después de instalar el CHM 15k debe controlarse y asegurarse de que no se hayan producido alteraciones relevantes para la seguridad en el equipo.
- La puerta del armario interior solo puede ser abierta por el personal de service de G. Lufft GmbH, o bien por personal autorizado y formado del cliente.
- No utilice el CHM 15k cuando el cristal está dañado. En ese caso envíelo a G. Lufft para su reparación.
- Peligro de explosión: el uso del CHM 15k en zonas con riesgo de explosión no está permitido

2.5 Representación de las advertencias

2.5.1 Descripción de las señales de peligro

Símbolo	Uso			
	Advertencia sobre un peligro general			
	Advertencia sobre la radiación láser			
4	Advertencia sobre tensión eléctrica peligrosa			
	Advertencia sobre superficies muy calientes			
	De conformidad con la ley sobre aparatos eléctricos y electrónicos, G. Lufft GmbH acepta la devolución de los aparatos obsoletos en todos los estados miembro de la UE y los elimina correctamente. Los aparatos afectados por dicha ley van provistos de este símbolo.			

2.5.2 Significado de las indicaciones de peligro

ADVERTENCIA

Indica una situación potencialmente peligrosa que en caso de no observancia puede causar la muerte o lesiones graves.

APRECAUCIÓN

Indica una situación potencialmente peligrosa que en caso de no observancia puede causar lesiones leves o moderadas.

AVISO

Indica una situación que en caso de no observancia puede provocar daños en el equipo.

2.6 Distintivos de seguridad en el CHM 15k

Figura1 muestra los distintivos de seguridad instalados en el equipo. La placa de características y la conexión de puesta a tierra se encuentran en la parte trasera del equipo, en el zócalo del armario.

Figura1 Distintivos de seguridad.

2.7 Uso debido

La seguridad de funcionamiento del CHM 15k solo está garantizada si el equipo se utiliza de manera conforme a las especificaciones en este manual de instrucciones.

El equipo solo se puede utilizar con alimentación monofásica de la red eléctrica pública según IEC38, Edición 6, 1983.

El ceilómetro solo se puede inclinar hasta un ángulo máximo de 20º. Cualquier uso distinto se considerará indebido. El titular del equipo es el único responsable de los daños resultantes.

El uso en posición horizontal supone un riesgo de seguridad para terceros y se prohíbe expresamente.

Para asegurar un funcionamiento sin incidencias es necesario establecer un ciclo de mantenimiento y limpieza (ver el capítulo 10).

3 Datostécnicos

3.1 Información de pedido

Variantes del equipo					
Código de referencia	Descripción	Alimentación	Longitud del cable		
8350.00	CHM 15k EU básico	230 VAC ±10%	10 m		
8350.01	CHM 15k EU + módem DSL	230 VAC ±10%	3 m		
8350.01-BW	CHM 15k EU + módem DSL + identificador AIT	230 VAC ±10%	3 m		
8350.03	CHM 15k EU + preparado para DSL	230 VAC ±10%	10 m		
8350.10	CHM 15k US/CA	115 VAC ±10%	10 m		
8350.B050	CHM 15k EU básico	230 VAC ±10%	50 m		

Tabla 1 Variantes del equipo.

Información general: La longitud estándar de los cables de RS485, LAN (o DSL) y alimentación es de 10 m. Las funciones de DSL y respaldo por batería son opcionales y también están disponibles para las variantes de 115 VAC.

3.2 Ficha técnica

Parámetros de medición					
Rango de medición	0 m 15 km (0 50000 ft)				
Rango de detección de nubes	10 m 15 km (33 50000 ft)				
Resolución de la medición	5 m				
Resolución de los datos NetCDF (*)	5 m – 30 m en pasos de 5 m (personalizable por el usuario) 15 m (configuración estándar)				
Datos de alta resolución NetCDF	5 m (definido para el vector HR en NetCDF)				
Intervalo temporal de registro y ciclo de informe (*)	2 s … 600 s (programable) Configuración estándar: 15 s				
Objetos de medición	Aerosoles, nubes (gotas líquidas, cristales de hielo)				
Parámetros medidos y de consigna	Perfiles de retrodispersión Altura de nubes de hasta 9 capas con profundidad de penetración (espesor de nubes), rango de detección máx. (MXD), visibilidad vertical (VOR), índice de condiciones del cielo (SCI), grado de cobertura (TCC, BCC),				
Principio de medición	Lidar (óptico, tiempo de recorrido de la luz)				
Parámetros ópticos					
Fuente de luz	Láser Nd-YAG de estado sólido, bombeado por diodos				
Longitud de onda	1064 nm				
Ancho de banda	0,1 nm				
Potencia de salida Pavg (máx)	59,5 mW				
Tasa de repetición de pulsos	5 – 7 kHz				
Duración del pulso	1 ns				
Divergencia del haz	<0.5 mrad				
Ancho de banda de filtro	1 nm				

Estabilidad a largo plazo en 12 meses (tasa de repetición de	<10 %		
Pulsos) Receptor FOV	0.45 mrad		
NOHD ampliada	1 km (nara apertura de 50 mm)		
Interfaces de datos			
Interfaces estándar	RS485 semidúplex (ASCII): LAN (http: (S-) FTP. NetTools)		
Interfaces opcionales	DSL RS232 (service)		
Parametros electricos			
	230 VAC ±10 % <u>o</u> 115 VAC ±10 %		
Frequencia de reu OU Π2, OU Π2 Máx 800 V/A con colofocción do ormania (octóndor);			
Consumo eléctrico	Max. 800 VA con calefacción de armario (estandar); Máx. 300 VA sin calefacción de armario		
Consumo eléctrico en W (en	Calefacción de la unidad de medición: 250 W @115 / 230 VAC		
Función SAI (opcional)	Batería de respaldo interna para la electrónica (> 1 hora)		
Soguridad dal aguina			
Boguioitos modisembienteles	150 10100 11		
Requisitos medioambientales			
Clase de protección de laser	1M segun IEC 60825-1:2014, corresponde a CFR 1040.10		
Grado de protección	IEC/ EN 60529: IP 65; IEC/EN 61010-1: IK06 (1 joule)		
	Clase de aislamiento I (requiere conductor de proteccion)		
Categoria de sobretension			
Grado de suciedad en el armario IP65	2		
CEM	EN 61326 clase B (ámbito industrial)		
Conformidad	CE		
Condiciones operativas			
Rango de temperatura	-40 °C a +55 °C		
Humedad relativa	0 % – 100 %		
Viento	60 m/s		
Altitud operativa máxima	2000 m		
Dimensiones			
Dimensiones del armario (base x altura)	L x An x Al = 0,5 m x 0,5 m x 1,55 m		
Dimensiones con embalaje	L x An x Al = 0,75 m x 0,86 m x 1,80 m		
Peso			
5	70 kg (el sistema completo)		
Peso	9.5 kg (unidad de medición = pieza más pesada)		
Requisitos para la instalación			
Sistemas de distribución de	Sistema TN-S: red puesta a tierra, armario del CHM 15k puesto a		
baja tensión adecuados	tierra, conductor neutro y conductor de protección con entrada y conexión independientes en el equipo Sistema TN-C-S: armario del CHM 15k puesto a tierra, conductor neutro y conductor de protección combinados en un conductor externo al equipo, pero con entrada y conexión independientes en el equipo		
Tipo de conexión	Conexión fija, puesta a tierra por terminal de puesta a tierra (ver Figura 12)		
Actuaciones por parte del titu	lar		
Protección contra rayos	- Existe protección interna contra rayos		

	 La protección externa contra rayos según DIN V VDE 0185-3 es opcional
Puesta a tierra	Sistema de puesta a tierra según DIN V VDE 0185-3
Requisitos para la instalación externa	 Dispositivo seccionador cerca del CHM 15k para la desconexión de la red de baja tensión De fácil acceso Identificado como parte del CHM 15k Protección previa de acuerdo con la sección de cable ≥ 6 A, B o C

Tabla 2 Ficha técnica.

(*) debido al tamaño del archivo y el tiempo de procesamiento se generan limitaciones al combinar una alta resolución temporal y espacial. Ejemplo: Resolución de 15 m con un alcance de 15 km y una resolución de 15 s → tamaño del archivo diario 24 MB (modo operativo estándar); la combinación de una resolución de 5 m en todo el rango de 15 km con una resolución temporal de 2 s generaría un archivo de >500 MB. El equipo Lufft no soporta combinaciones que generen archivos NetCDF >100 MB.

4 Descripción técnica

El ceilómetro CHM 15k se utiliza principalmente para determinar la altura de las nubes, la profundidad de penetración de las nubes, el grado de cobertura, la visibilidad vertical y la capa de aerosoles. Los datos calculados se envían por transmisión remota a través de interfaces digitales estándar.

El principio de medición del CHM 15k sigue el método lidar (light detection and ranging): El láser de estado sólido de microchip emite breves pulsos de luz a la atmósfera, donde la luz es dispersada por los aerosoles, gotas de agua y moléculas de aire. Se analizará la parte de luz reflejada y captada por el ceilómetro. Se mide el tiempo de recorrido de los pulsos de láser y se utiliza para calcular la distancia al objeto que causa la dispersión.

Se analiza el perfil de altura de la señal retrodispersada para calcular la intensidad de retrodispersión β_{raw} como primer parámetro que proporciona el equipo. A partir del valor de β_{raw} se puede calcular el coeficiente de retrodispersión atenuado β_{att} con la constante de calibración válida para los equipos CHM 15k. Con estos datos se calculan los diferentes parámetros objetivo tales como las alturas de la nubes y de las capas de aerosoles.

El sistema de detección del CHM 15k se basa en el método de contaje de fotones. Solo se puede utilizar en combinación con un láser como el que está integrado en el CHM 15k. El ancho de banda reducido del láser permite utilizar un filtro óptico con un ancho de solo 1 nm (o menos) delante del detector. El filtro es necesario para eliminar de forma eficiente la luz de fondo y promediar los datos durante unos minutos. La promediación de las señales sirve para obtener una relación señal/ruido determinada y es esencial para las mediciones lidar, que generan los perfiles de aerosoles. En comparación con los métodos de medición analógicos, estos métodos destacan por su elevada sensibilidad y precisión de detección. La técnica ofrece además una elevada resistencia contra las perturbaciones de la señal.

El ceilómetro CHM 15k:

- es un equipo compacto que incluye un ventilador para la calefacción y la ventanilla
- se puede utilizar en las condiciones ambientales especificadas en la ficha técnica (ver 3 Datostécnicos)
- tiene un diseño modular que permite, por ejemplo, sustituir en el campo la unidad de medición láser (LOM) por otra LOM
- es un equipo diseñado para funcionar en régimen continuo 24/7

4.1 Componentes del CHM 15k

El armario del CHM 15k es de aluminio resistente a la corrosión y tiene una estructura de doble casco. La envolvente exterior sirve para minimizar el efecto de las inclemencias como

- Radiación solar
- Viento
- Lluvia
- Nieve

sobre el armario interior que lleva la unidad de medición. El efecto chimenea que se genera entre la envolvente exterior y el armario interior apoya este proceso.

La cubierta protege el armario interior de la suciedad y las precipitaciones.

La cubierta incluye la boca para la salida y entrada de la radiación láser. El panel divisorio de la cubierta depara la parte de emisión de la sensible parte de recepción. El deflector de aire en el interior de la cubierta conduce el flujo de aire de los dos ventiladores directamente hacia los cristales del armario interior.

El armario interior incorpora toda el equipo técnico necesario para el funcionamiento del CHM 15k. Los pasacables de las líneas de datos, de la alimentación eléctrica, puesta a tierra y la conexión de los ventiladores exteriores están realizados con prensaestopas. Para compensar la presión el armario interior dispone de un elemento compensador de presión con una membrana Goretex[®].

Una ventanilla partida de vidrio flotado descolorido constituye el cerramiento superior del armario interior. Los cristales están inclinados aplicando el ángulo de Brewster. Esta inclinación minimiza las pérdidas de entrada del láser y asegura una óptima autolimpieza de los cristales. Los ventiladores situados en la parte trasera del equipo apoyan además la limpieza de los cristales. Los ventiladores se activan cada hora y cuando cae lluvia o nieve. Los ventiladores también sirven para disipar el calor generado en el interior del armario. Para realizar el mantenimiento de los ventiladores se puede desmontar el panel trasero del CHM 15k.

La puerta exterior da acceso al interior de la envolvente y a los cristales, p. ej., para limpiarlos. El acceso al interior del equipo se realiza mediante una puerta interior. La puerta interior y la puerta exterior están

aseguradas mediante mecanismos de cierre distintos. La puerta del armario interior solo puede ser abierta por el personal de service de G. Lufft GmbH, o bien por personal autorizado y formado del cliente.

4.2 Unidades funcionales del armario interior

El equipo incorpora las siguientes unidades funcionales:

- La unidad de emisión y recepción (unidad de medida LOM)
- La placa de control y los componentes asociados
- La fuente de alimentación de 12 15 VDC para la electrónica
- El transformador de 48 VCD para los ventiladores
- Los ventiladores y los sensores de temperatura
- Los dispositivos de protección contra rayos y sobretensión para los cable de alimentación, LAN y RS485

La unidades funcionales presentan un diseño modular y se montan por separado en el armario interior, lo cual permite extraer y sustituir cada uno de los módulos en las tareas de service.

4.2.1 Esquema funcional

Figura 2 Esquema funcional. Los números entre paréntesis se corresponden con los códigos de la lista de recambios (ver manual de service).

Figura 2 muestra claramente que el controlador principal es la unidad central. El controlador principal controla y monitoriza todas las funciones del equipo representadas en el esquema y facilita los datos de estado correspondientes.

4.2.2 Control de funciones y estado del equipo

Figura 3 Esquema secuencial del ciclo de medición estándar

El control de las funciones del CHM 15k (medición y evaluación) se realiza mediante un FPGA y un procesador OMAP. El intervalo temporal de registro (sin representación aquí) consiste en varios ciclos de medición calculados en el procesador OMAP, y en el FPGA se procesan las operaciones con una resolución temporal mayor con intervalos temporales de hasta 1 s.

Figura 3 muestra el ciclo de medición interno que tiene lugar cada segundo. Después de cada ciclo de medición se comprueban los datos de medición y la evaluación de los parámetros de estado. Si los valores se encuentran fuera de tolerancias o si se produce un error de hardware, se reinicializa el ciclo de medición estándar y se genera y emite un mensaje de error.

No obstante, algunos componentes se consultan y controla con una resolución temporal mayor como, p. ej., la regulación de la temperatura, y los componentes que están incluidos en el intervalo temporal de registro, como la evaluación de la suciedad de la ventanilla y el control de los ventiladores en caso de precipitaciones.

El estado del receptor depende de los resultados que arroja la monitorización del nivel de ruido, de la tensión de alimentación y de la corriente continua con o sin pulso de verificación. Debido a su configuración interna, la fuente de luz se caracteriza principalmente por la frecuencia de secuencia de pulsos, que puede bajar con el envejecimiento de la fuente de luz. La frecuencia de pulso está monitorizada. Si la frecuencia de pulso es inferior a 4,5 kHz se emite un mensaje de error. Asimismo, se analiza la reflexión de la radiación en la ventanilla para monitorizar la suciedad de la ventanilla. Los valores obtenidos se facilitan en forma de telegramas de datos y forman parte de los archivos NetCDF. Además existe un watchdog de software que controla los procesos de firmware. Los valores de estado y otros datos determinados se proporcionan a través del telegrama de datos ampliado y los datos NetCDF. El mensaje estándar contiene información general sobre el código de estado (ver 8.5 Código de estado).

5 Transporte y volumen de suministro

AVISO

La manipulación inadecuada puede provocar daños en el equipo.

- El CHM 15k solo se puede transportar y mover con los medios de transporte y elevación adecuados.
- El CHM 15k solo se puede cargar y transportar en su embalaje y en posición de transporte (ver Figura 5).
- El CHM 15k embalado debe asegurarse adecuadamente en el medio de transporte contra el desplazamiento, los golpes e impactos.

El volumen de suministro incluye:

- Ceilómetro CHM 15k
- Carpeta de anillas con documentación
 - Plantilla para taladrar
 - Instrucciones de instalación mecánica
 - o Instrucciones de instalación eléctrica
 - Protocolo de pruebas
 - o Listado con los número de serie de los componentes incorporados
 - Manual de instrucciones y tarjeta USB con el software de comunicación
- Elementos de fijación:
 - 4 tacos S12 (Fischer Co.)
 - 4 tornillos M10 x 140-ZN (DIN 571)
 - 4 arandelas ISO 7093-10.5-KST/PA
 - 4 arandelas ISO 7093-10.5-A2

A petición del cliente:

- Se puede entregar un marco adaptador al que se puede atornillar el CHM 15k con los tornillos de fijación existentes.
- Se puede entregar un marco adaptador angulado para inclinar el ceilómetro en 15º a fin de evitar la radiación solar directa, por ejemplo.

Información sobre las unidades de medida

Tensores / llaves para 4x tornillos M10: 18 mm o 7/16 BSF o 3/8 Worth. En lugar de los tornillos M10 se pueden utilizar tornillos de 3/8 o de 25/64 pulgadas junto con los anclajes adecuados.

Para más detalles técnicos diríjase a G. Lufft GmbH.

Estado operativo del CHM 15k al salir de fábrica

Modo de transferencia	1, envío automático del telegrama estándar		
Número de equipo RS485	16		
Tasa de baudios	9600		
Duración de la medición	15 s		

Para información detallada sobre los estados operativos ver 8 Comunicación a través de RS485 y Ethernet.

2,5 m

25 m

6 Instalación

AVISO

- ➡ La realización y el dimensionamiento de la cimentación para el CHM 15k es responsabilidad del titular. La cimentación debe dimensionarse de forma que resista de forma permanente el peso propio del equipo y las acciones externas previsibles.
- ➡ Para evitar la penetración se suciedad y humedad, el equipo no se puede abrir durante la instalación y la puesta en servicio.

El ceilómetro CHM 15k debe instalarse y anclarse sobre una cimentación de hormigón adecuada. Los tornillos de nivelación integrados en la parte inferior de la base permite corregir la orientación vertical del equipo y de la unidad de medición.

El CHM 15k solo se puede utilizar en un ámbito exterior protegido. Debe evitarse la exposición a fuentes de luz potentes. El ángulo de incidencia de la radiación solar debe ser de \geq 15° respecto de la vertical. Solicite el adaptador angular adecuado. La distancia hacia los arbustos y árboles debe ser suficiente para que las hojas de las plantas no puedan alcanzar las bocas de salida de la luz del equipo. En la instalación del CHM 15k deben respetarse las siguientes distancias mínimas:

- a equipos radioeléctricos móviles
- a emisores estacionarios y estaciones base (potencia de emisión ≥ 100 W)
- entre dos ceilómetros (riesgo de interferencias ópticas) 10 m

6.1 Instalación del CHM 15k

6.1.1 Trabajos preparatorios

El CHM 15k precisa una superficie de instalación de 50 x 50 cm. Debe instalarse y montarse sobre una cimentación de hormigón estable y resistente. La inclinación de la superficie de instalación no puede ser superior a 5 mm/m. Antes de instalar el CHM 15k deben practicarse en la cimentación de hormigón los orificios e introducirse los tacos (ø 12 mm, 4 tacos incluidos en el volumen de suministro) según la plantilla para taladrar (ver Figura 4). Tener en cuenta la orientación de la puerta exterior respecto de la acometida eléctrica en la caja de acometida del titular.

Figura 4 Plantilla para taladrar.

- 1 Plantilla para taladrar
- 2 Orificios (ø 12 mm) de anclaje
- 3 Posible acometida eléctrica (caja de acometida)
- 4 Sentido de apertura de la puerta exterior

6.1.2 Instalación sobre la cimentación

El peso del CHM 15k es de 70 kg. Las cargas pesadas pueden provocar graves lesiones.

No mueva el CHM 15k sin los medios auxiliares adecuados
 Para instalar el CHM 15k se requieren al menos dos personas

Instalar el ceilómetro CHM 15k como sigue:

Descargar el CHM 15k del medio de transporte con un medio elevación adecuado y depositarlo lo más cerca posible del lugar de instalación.

Figura 5 CHM 15k embalado y en posición de transporte.

- ➡ Retirar el embalaje
- ➡ Desatornillar las paredes laterales
- Retirar las paredes laterales una por una

Figura 6 CHM 15k con embalaje de poliestirol o papel alveolar

- 1 Elementos de poliestirol
- 2 CHM 15k
- 3 Palet
- Elevar el CHM 15k manualmente con cuidado para retirarlo de los elementos de poliestirol, respetando las normas de seguridad (posiciones de elevación: Figura 7).

Figura 7 Posiciones de elevación y protección de agarre (perfil de cantonera).

Opciones de traslado:

- Manualmente: introducir las manos en las aberturas que señalan las flechas (Figura 7)
- ⇔ Con carretilla: si la distancia a la cimentación de hormigón es larga (Figura 8)

AVISO

- Para transportar el CHM 15k con una carretilla, debe colocarse en la carretilla con la puerta exterior hacia abajo (ver Figura 8)
- Recomendamos insertar algún material de acolchado (p. ej., plástico de burbujas) entre el CHM y la carretilla.

Figura 8 Transporte con carretilla.

Posicionar el CHM 15k en su posición de instalación (vertical) sobre la cimentación de hormigón.
 Tener en cuenta la puerta exterior respecto de la ubicación de la caja de acometida eléctrica del

titular (ver Figura 4).

En primer lugar premontar el CHM 15k con los tornillos de fijación y las arandelas suministradas (ver Figura 9) sin apretar en la cimentación de hormigón.

Figura 9 Elementos de fijación.

- 1 Tacos S12
- 2 Tornillo de nivelación 5 mm (integrado en la base del equipo)
- 3 Tornillo DIN 571-10 x 140-ZN
- 4 Arandela ISO 7093-10.5-A2
- 5 Arandela ISO 7093-10.5-KST/PA
- 6 Cimentación de hormigón
- ➡ Nivelar verticalmente el CHM 15k mediante los tornillos de nivelación integrados en la base del equipo (colocar un nivel de burbuja en un panel lateral y en el panel frontal).
- Apretar los tornillos de fijación (tuercas)
- Retirar la protección de agarre (perfil de cantonera) desde arriba y guardarla en el zócalo para el siguiente transporte.

6.2 Instalación eléctrica

AVISO

La instalación incorrecta puede provocar daños en el equipo.

- La conexión eléctrica del CHM 15k debe correr siempre a cargo de un técnico electricista de G. Lufft GmbH, o de otro técnico electricista.
 Al incumplir este requisito se pierden los derechos de garantía y reclamación.
- El titular debe crear las condiciones para la conexión del ceilómetro CHM 15k según EN 61016-1, p. ej., mediante la instalación de una caja de acometida.

Figura 10 muestra un esquema de la instalación eléctrica del CHM 15k. La alimentación eléctrica (1) del equipo debe realizarse a través de un dispositivo seccionador externo. Debe ser de fácil acceso para poder desconectar el equipo de la red en caso necesario. El dispositivo seccionador debe identificarse como perteneciente al equipo y disponer de una protección previa de acuerdo con la sección de cable \geq 6 A, B o C. La caja de acometida debe instalarse a una distancia de < 3 m. El cable de puesta a tierra debe ser lo más corto posible. El conexionado debe realizarse conforme a la normativa del país.

Figura 10 Esquema de la instalación eléctrica.

- 1 Alimentación eléctrica
- 2 Seccionador de red
- 3 Datos
- 4 PC para acceso remoto (con LAN/DSL no se requiere PC local)
- 5 Protección contra rayos

ADVERTENCIA

Al tocar piezas en tensión existe peligro de electrocución que puede provocar lesiones graves e incluso mortales.

Antes de proceder a la instalación desconecte el interruptor de protección externo y asegúrelo contra una posible reconexión.

La conexiones eléctricas del CHM 15k se especifican con más detalle en Figura 11. Establecer las conexiones del cable de alimentación y de los cables de datos tal y como se muestra en la figura. Recomendamos integrar una protección contra sobretensiones adicional en todas las conexiones para evitar daños en la caja de acometida. El CHM 15k dispone de una protección contra rayos interna. El conexionado del CHM 15k se realiza a través de los siguientes cables suministrados:

 Cable de alimentación de 230 VAC (cable de red): Código de color: conductor neutro: azul, conductor de fase: marrón, conductor de protección: verde-amarillo, longitud estándar 10 m OPCIÓN

Cable de alimentación de 115 VAC (cable de red); código de color: fase negro, neutro blanco, conductor de protección: verde/verde-amarillo

Figura 11 Instalación eléctrica del CHM 15k.

2. Cable de tierra 10 mm² (unifilar, verde-amarillo), longitud estándar 2,6 m para conexión a tierra (ver Figura 12). El cable de puesta a tierra debe ser lo más corto posible.

Figura 12 Terminal de puesta a tierra en el zócalo del equipo.

3. Cable de datos (RS 485): A conductor (-): amarillo; B conductor (+): verde; RS485 - GND: blanco y marrón; pantalla en caso necesario: (ver Figura 13); longitud estándar 10 m.

Figura 13 Conexión RS485 a un convertidor de señal.

- 4. Cable de datos (LAN): confeccionado con un conector estándar RJ45 para la conexión a un ordenador, hub o switch externo, longitudes estándar 5 o 10 m.
- 5. Opcional en lugar de pos. 4: cable de datos (DSL): confeccionado con un cable de conexión bifilar para la conexión a un módem DSL (ver Figura 14).

Los distintos fabricante utilizan diferentes definiciones para la denominación RDA(-), RDB(+). Lufft utiliza la notación de B&B Electronics.

Figura 14 Conexión DSL

7 Puesta en servicio y puesta fuera de servicio

7.1 Puesta en servicio con la conexión RS485

Condiciones previas:

- El ceilómetro CHM 15k se ha instalado correctamente.
- El cable de control (RS485), el cable de puesta a tierra y el cable de alimentación (230 VAC) están conectados
- Para comprobar la comunicación se dispone de un programa de terminal, p. ej. HyperTerminal bajo Windows, que se ha configurado de la siguiente manera para la comunicación:
 - Tasa de baudios: 9600
 - Bits de datos: 8
 - Paridad: ninguna
 - Bits de parada: 1
 - Control de flujo: ninguno

A PRECAUCIÓN

Después de conectar la alimentación eléctrica, el CHM 15k emite radiación láser invisible de la clase 1M por la parte superior del equipo. La observación de la radiación de la clase 1M con instrumentos ópticos puede provocar graves lesiones oculares.

- En ningún caso se debe observar el haz láser directamente con instrumentos ópticos, (prismáticos).
- ⇒ Evitar mirar directamente al haz láser.

El CHM 15k arranca automáticamente después de conectar la alimentación eléctrica. Durante el proceso de arranque se realiza un autotest interno en el que se inician durante unos segundos los ventiladores, por ejemplo. La comunicación con el equipo se puede establecer dentro de un minuto. El CHM 15k estará plenamente operativo después de transcurrir la fase de calentamiento, cuya duración depende de las condiciones de temperatura exteriores. El tiempo que transcurre entre el arranque del equipo y la disponibilidad de los primeros datos de medición de alta calidad puede ser de entre dos minutos (arranque en caliente) y una hora (arranque en frío a -40 °C).

Una vez finalizado el proceso de arranque, el CHM 15k emite automáticamente los telegramas de datos estándar. Forma parte de la configuración estándar y puede diferir cuando en el CHM 15k se hayan realizado configuraciones de arranque CHM 15k definidas por el usuario. El envío de los datos cada 15 s ayuda para comprobar si la comunicación funciona correctamente, sin tener que introducir ningún comando.

Para modificar el comportamiento de arranque, p. ej., modo se solicitud o automático, o el telegrama utilizado en el arranque, ver el capítulo 8 Comunicación a través de RS485 y Ethernet.

Comandos de prueba para la comunicación RS485

La comunicación se puede probar con este comando(RS485Number = 16 (valor estándar)):

set<SPACE><RS485Number>:Transfermode=0<CR><LF>

Este comando cambia del modo auto a polling. La prueba en modo de polling sirve para evitar las interrupciones por el envío automático de telegramas durante la entrada de datos. Se dispone de un total de 9 tipos de telegrama:

- Telegrama de datos estándar (denominación: 1 o s)
- Telegrama de datos ampliado (denominación: 2 o l)
- Telegrama de datos en bruto (denominación: 3 o a)
- Telegramas definidos por el usuario (denominación: 4, 5, ..., 9)

En el capítulo 8 se describen detalladamente los posibles comandos RS485 y sus efectos. Tabla 3 contiene algunos de los comandos para la prueba funcional y la configuración inicial del equipo.

Command	Descripción	Response (shortened)
get <space>16:L<cr><lf></lf></cr></space>	Envío del telegrama de datos ampliado	ver 8.3.4
set <space>16:RNO=14<cr><lf></lf></cr></space>	Cambia la dirección RS485 de 16 a 14	set 16:RNO=14
set <space>16:Baud=4<cr><lf></lf></cr></space>	Establece la tasa de baudios en 19.200	set 16:Baud=4
set <space>16:dt(s)=15<cr><lf></lf></cr></space>	Establece el intervalo de registro en 15 s	set 16:dt(s)=15
get <space>16:Lifetime(h)<cr><lf></lf></cr></space>	Consulta del contador de horas de servicio del láser	get 16:Lifetime(h)

Tabla 3 Comandos para la prueba funcional

Una vez finalizada la prueba funcional básica:

- seguir operando el CHM 15k en modo de polling o
- volver al modo de emisión automática

set<SPACE><RS485Number>:Transfermode=1<CR><LF>

Nota: Este comando devuelve el equipo al modo de transmisión automática con el telegrama estándar 1

Velocidad en baudios de la transmisión de datos en bruto

La configuración de la velocidad en baudios es especialmente importante en el modo de bus RS485. Si se precisa una transmisión de datos en bruto, cada telegrama puede tener un tamaño de 12 kB. Para reducir el tiempo de transmisión entre dos telegramas de 15 s, debe configurarse una tasa de baudios mínima de 19.200 baudios.

7.2 Puesta en servicio con la conexión LAN

Como alternativa o adicionalmente a la conexión RS485 se puede utilizar una conexión LAN (Ethernet).

Condiciones previas: Conectar un cable LAN (ver 6.2 Instalación eléctrica) o establecer una conexión LAN a través de un módem DSL de envío y recepción intercalado.

Configuración: Para la comunicación existen tres direcciones IP diferentes, disponibles simultáneamente:

1. La dirección fija preconfigurada del equipo

→ 192.168.100.101, subnet 255.255.255.0

- 2. La IP asignada por un servidor DHCP (requiere un servidor DHCP)
- 3. La dirección de usuario + subnet + gateway
 - ver el apartado 8.7 Comunicación a través de la interfaz de web/Ethernet correspondiente a la configuración de la conexión LAN/WAN con el equipo y 8.2, cuando estos parámetros se configuran a través de la interfaz RS485.

El usuario no puede cambiar la dirección de service (1). Está siempre disponible y se puede utilizar como conexión directa entre un ordenador portátil y el CHM 15k.

Para comunicar con el equipo, se puede introducir una de las direcciones IP en un navegador web (ver Figura 15). Figura 20 muestra la pestaña "Config Network" del navegador Firefox. Para cambiar la dirección IP de usuario (3) se requieren los derechos de superuser de la pestaña "Device".

La contraseña de superuser es: 15k-Nimbus

La contraseña de superuser se puede cambiar, ver Figura 22.

La interfaz web se ha probado con los siguientes navegadores web:

- Internet Explorer 8 o superior
- Firefox 3.6 o superior
- Google Chrome
- Apple Safari

En un entorno de red con DHCP (2), el CHM 15k se configura automáticamente. El modo DHCP se puede desactivar.

[]]a	HM - Cloud Hei	ght Meter	+	
•) 🔊 🔊	10.64.102	.36	
	Device	Viewer	NetCDF Files	Config Sy

Figura 15 Vista del navegador Firefox con comunicación con el CHM 15k (aquí: de dirección IP fija).

Este comando permite consultar la dirección DHCP a través de una conexión RS485.

get<SPACE><RS485Number>:IPD<CR><LF>.

Si la dirección DHCP está disponible, el equipo la transmite y en el siguiente paso se puede introducir en un navegador para establecer la comunicación con el equipo por LAN. El usuario puede consultar o establecer la dirección IP de usuario a través de RS485 utilizando el parámetro IPS en lugar de IPD, p. ej.:

```
get<SPACE><RS485Number>:IPS<CR><LF>
```

set<SPACE><RS485Number>:IPS=xxx.xxx.xxx.xxx<CR><LF>

Para establecer otros tipos de comunicación diríjase a G. Lufft GmbH.

7.3 Puesta fuera de servicio

Un usuario avanzado debe seguir el siguiente procedimiento para desconectar cuidadosamente la alimentación eléctrica del equipo:

- Los usuarios con derechos de superuser deben utilizar la interfaz web: Iniciar sesión como superuser y pulsar la opción "SHUTDOWN SYSTEM" de la pestaña "Device".
- Los usuarios de RS485 pueden introducir el siguiente comando:

set<SPACE><RS485Number>:SHT<CR><LF>

➡ En ambos casos se apaga el sistema basado en Linux y los datos de medición de guardan en la tarjeta SD local.

Después de apagar el sistema de software se puede desconectar la alimentación general sin que exista peligro de pérdida de datos.

➡ Para desinstalar el CHM 15k e instalarlo en otra ubicación deben seguirse en orden inverso los pasos descritos en los apartados 6.1.2 Instalación sobre la cimentación y 6.2 Instalación eléctrica.

7.4 Eliminación de residuos

Indicaciones de eliminación de residuos

La eliminación del ceilómetro CHM 15k debe realizarse conforme a la normativa nacional. Los aparatos eléctricos identificados con este símbolo no se pueden desechar a través de los sistemas de recogida de residuos domésticos o públicos europeos. Remita los aparatos antiguos o obsoletos al fabricante para su eliminación gratuita.

8 Comunicación a través de RS485 y Ethernet

El CHM 15k ofrece compatibilidad con las interfaces RS485 (apartado 8.2) y Ethernet (apartado 8.7) para la comunicación con el equipo. Ambas ofrecen la posibilidad de transmitir los datos de medición y de configurar el equipo y se pueden utilizar simultáneamente.

Para la comunicación a través de la interfaz Ethernet se dispone de una interfaz web. Permite acceder al ceilómetro mediante un navegador web desde cualquier sistema operativo.

La interfaz web permite además descargar manualmente de la tarjeta SD incorporada los datos de medición guardados en los archivos diarios NetCDF (apartado 8.4). Asimismo el sistema lleva implementado un servicio AFD (ftp) (apartado 8.8) que permite, por ejemplo, transmitir datos de archivos NetCDF en bloques de 5 minutos a un servidor FTP remoto.

La comunicación RS485 requiere un programa de terminal.

Envío y recepción con RS485

La interfaz RS485 no permite el envío y la recepción simultáneos (modo semidúplex). En consecuencia, la interfaz se conmuta internamente entre las dos funciones. Por esta razón no es posible enviar otros comandos (como los que se describen en 8.1) al mismo tiempo que se recibe un telegrama de datos enviado automáticamente (ver los apartados de 8.3.3 Telegrama de datos estándar a 8.3.5 Telegrama de datos en bruto). Los flags de inicio y final <STX> y <EOT> muestran una transmisión de recepción activa.

8.1 Lista de los parámetros configurables

La Table 4 contiene una lista de las configuraciones más importantes. Se explicarán en los siguientes apartados. Algunas opciones, como el nombre del equipo solo se pueden configurar en el modo de service (RS485) el modo de superuser o el modo de usuario de service (Ethernet), a fin de evitar efectos no deseados sobre el funcionamiento del equipo.

La Tabla 5 muestra una lista de parámetros con propiedades protegidas contra escritura. Algunos de estos parámetros están guardados en la EEPROM del equipo de medición e inciden sobre la evaluación de datos y la configuración básica del equipo.

Las tablas contienen el rango de valores permitido para cada uno de los parámetros y el valor estándar configurado de fábrica. Los parámetros también incluyan la información de cuándo se requiere un service.

Parámetros	Comando corto ^{RS485}	Valor estándar	Rango/descripción corta
AfdMode*	AFD	0	0; 1, activar transferencia de datos ftp
Altitude(m)	ALT	0	0 – 9999, unidad siempre en metros
ApdControlMode*	ACM	3	0, 1, modo APD, solo cambiar cuando el modo de funcionamiento es conocido
Azimuth	AZT	0	0-360 grados x 100 ^{Web} (p. ej. 12.25 ^{RS485} 1225 ^{Web})
Baud	BAU	3	2 – 7 (4.800 – 115.200 baudios)
BaudAfterError*	BAE	3	2-7 (4.800-115.200 baudios)
BlowerMode	BLM	0	0 – 4
ChmTest*	СНТ	0	0; 1
CloudDetectionMode	CDM	0	0; 1
Comment	СОМ		Comentario que también se guarda en el archivo NetCDF

Parámetros	Comando corto ^{RS485}	Valor estándar	Rango/descripción corta
Comment 1 ^{RS485}	CM1		Campo de comentario adicional (31 caracteres)
Comment 2 RS485	CM2		Campo de comentario adicional (31 caracteres)
Comment 3 RS485	CM3		Campo de comentario adicional (31 caracteres)
Comment 4 ^{RS485}	CM4		Campo de comentario adicional (31 caracteres)
Comment 5 RS485	CM5		Campo de comentario adicional (31 caracteres)
Comment 6 RS485	CM6		Campo de comentario adicional (31 caracteres)
Comment 7 RS485	CM7		Campo de comentario adicional (31 caracteres)
DateTime			Hora UTC en el formato DD.mm.YYYY;HH:MM:SS ^{RS485} y MMDDHHmmYYYY ^{Web} (ver Figura 22)
DeviceName*	DVN	CHMyyxxxx	CHM + número de serie del equipo
DeviceType*	DVT	0	Conmutación formato NetCDF (firmware <1.000: valor estándar CHM15k)
DHCPMode	DHM	1	0;1 activar/desactivar el modo DHCP
DNSServer	DNS		Establecer/consultar la de dirección IP del servidor DNS
dt(s) ^{RS485} LoggingTime ^{Web}	DTS	15	Intervalo de registro e informe: 5 – 600 s
Gateway	GAT	0.0.0.0	Establecer/consultar la dirección de gateway estática
HardwareVersion*	HWV		Según equipo, ver Tabla 23
HttpPort	HPT	80	Especifica el puerto http para la conexión con la interfaz web del equipo
IgnoreChars*	ICH	06	Códigos ASCII de 8 bits
Institution	INS	MSNM	Institución (texto)
IPaddress	IPS	0.0.0.0	Establecer/consultar la dirección IP estática
LanPort	LPT	11000	Puerto para la transmisión del telegrama por Ethernet
LanTelegramNumber	LTN	2	Formato del telegrama para la transmisión por Ethernet [1, 9], ver apartado 8.3

Parámetros	Comando corto ^{RS485}	Valor estándar	Rango/descripción corta
LanTransferMode	LTM	1	Modo de comunicación para la transmisión del telegrama por Ethernet (0 = polling, 1 = envío automático)
LaserMode*	LSM	1	Activar/desactivar el láser
Latitude	LAT	0	-90 as +90 grados (x 10 ⁶) ^{Web} (p. ej. 52.430210 ^{RS485} y 52430210 ^{Web}) + son grados norte
Layer	NOL	3	1 – 9, número de capas de nubes
Location	LOC	MSNM	Secuencia alfanumérica (máx. 31 caracteres, \/:*?"<> _# % no permitido)
Longitude	LON	0	-180 a +180 grados (x 10 ⁶) ^{<i>Web</i>} (p. ej. 13.524735 ^{<i>RS485</i>} y 13524735 ^{<i>Web</i>}) + son grados este
MaxCrosstalkChars*	MCC	5	0 – 1024
NetMask	NMA	0.0.0.0	Establecer/consultar la dirección de máscara de red estática
NtpMode	NTM	1	0; 1 activar/desactivar ntpd
NtpServer	NTS	0.0.0.0	Establecer/consultar la dirección del servidor horario NTP
PeltierMode*	PTM	1	0; 1
RangeEnd	RAE	15345	Último valor de distancia en el archivo NetCDF
RangeHRDim	RHD	32	Número de puntos de datos en el vector de datos de alta resolución
RangeResolution	RAR	3	Número de intervalos de distancia de 5 m para el vector de datos NetCDF promediado
RangeStart	RAS	15	Primer valor de distancia en el archivo NetCDF
Reset	RST	0	0; 1 reinicio del CHM (ver 8.2.4)
ResetPassword*	RSP	0	0; 1; restablecer la contraseña estándar de superuser
ResetSettings	RSG	0	0; 1 restablecer la configuración de fábrica (ver 8.2.4); interfaz web: "set to factory setting"
RestartNetwork	RSN	0	0; 1 escribe la nueva configuración en el archivo de configuración y reinicia la red
RS485Number	RNO	16	0 – 99 (utilizado con RS485)
ServiceMode ^{RS485}	SMO	0	0; 1 cambia al modo de service para modificar valores "críticos"

Parámetros	Comando corto ^{RS485}	Valor estándar	Rango/descripción corta
Shutdown	SHT		0; 1 apagar el sistema CHM
Standby	STB	0	0; 1; modo standby con telegrama standby para reducir el consumo eléctrico
SystemStatusMode	SSM	0	0; 1 con 1 se utiliza un código de estado escalable en el telegrama
TimeOutRS485(s)*	TOR	30	5 – 3600
TimeZoneOffsetHours	ТΖН	0	-12 12 horas, p. ej. CET es +1, se utiliza para controlar la ventilación del cristal
TransferMode	ТМО	0	0 – 9, ver el apartado 8.3
TransferModeAfterError*	ТМЕ	0	0 – 9
UAPD*			En función del equipo en mV (p. ej. 172000)
Unit(m/ft)	UNT	m	m, ft
UseAltitude	UAL	0	0; 1
WMOStationCode	WSC		Establecer/consultar los códigos de estación WMO
Zenith	ZET	0	0 - 90 grados (x 100) ^{Web} (p. ej.,10.25 ^{<i>R</i>S485} y 1025 ^{Web}) 0° es vertical

Table 4 Lista de los parámetros de equipo configurables;

* se puede establecer en el modo de service

Web Formato para la interfaz web o solo disponible en la interfaz web

RS485 Formato para RS485 o solo disponible para RS485.

Parámetros	Comando corto ^{RS485}	Valor estándar	Descripción
APDBreakdown	UBR		En función del equipo (p. ej. 400.000 mV)
ApdTempGradient	тсо	2400	Valor para comparación [mV/K]
IPDhcp	IPD		Dirección IP DHCP
LaserPower	LAP		En función del equipo (p. ej. 50 mW)
LifeTime(h)	LIT		Número de horas de servicio del láser
Parameters ^{RS485}			Devuelve una lista de todos los parámetros disponibles en el modo RS485
SerLOM	LOM	TUByyxxxx	Número de serie de la unidad de medición (LOM)

SystemLifeTime(h)	SLT	Número total de horas de servicio del sistema CHM
TBCalibration	TBC	Factor de escalada respecto de la referencia
VersionFirmware	VFI	Versión de firmware (procesamiento de datos y manejo)
VersionFPGA	VFP	Firmware FPGA
VersionLinux	VLI	Versión del sistema operativo

Tabla 5 Lista de los parámetros de solo lectura disponibles a través de RS485;RS485solo disponible para RS485.

Explicaciones sobre Table 4

AFDMode: Activar/desactivar el sistema de distribución de datos mediante LAN / WAN / DSL, para más información ver http://www.dwd.de/AFD/ o el apartado *8.8*.

Altitude(m): Indicación de la altitud de la ubicación en metros sobre el nivel del mar En los archivos NetCDF se utiliza el parámetro CHO (offset base de las nubes). Combina de forma lógica las variables Altitude y UseAltitude.

Azimut: Indicación del ángulo horizontal en grados.

Baud: Cambio de la tas de baudios (ver 8.2.3 Cambio de la tasa de baudios).

BaudAfterError: Tasa de baudios después de un error de comunicación (ver 8.2.3 Cambio de la tasa de baudios).

BlowerMode: Sirve para probar los ventiladores de la ventanilla y para cambiar el modo operativo. Modo 2: "rest at night" solo funciona adecuadamente cuando se ha configurado correctamente el parámetro TimeZoneOffsetHours. 0 = control cada hora y en función del tiempo meteorológico, 1 = sin control cada hora de 22:00 a 06:00 h, 2 = desactivado de 22:00 a 06:00 h, 3 = siempre activados, 4 = siempre desactivados.

DataTime: Poner fecha y hora (ver 8.2.5 Cambio de la configuración de tiempos).

dt(s): Intervalo temporal de registro (en modo automático idéntico el intervalo de informe). Con un intervalo más largo, el informe contiene más pulsos fotónicos (disparos), mejorando la relación señal/ruido. Un aumento por el factor n supone una mejora por el factor raíz(n). Todos los datos brutos del intervalo temporal dt(s) se incluyen en la evaluación. No se realiza una selección de datos individuales.

DeviceName (alt FabName): Nombre del equipo (CHM) combinado con el número de serie del equipo, p. ej., CHM060001.

IgnoreChars: Códigos HEX específicos de dos dígitos, p. ej., "06" corresponde a <ack>; se pueden añadir a una lista de caracteres que el equipo CHM 15k no debe evaluar.

Institution: Institución o empresa.

Lasermode: Enciende/apaga el láser, opción útil para pruebas.

LaserPower: Potencia láser en mW.

Latitude: Latitud geográfica de la ubicación, ejemplo Berlín: 52,51833 (corresponde a 52° 31' 6" N).

Layer (Number of Layers): Número de las capas de nubes representadas en el telegrama ampliado y en el archivo NetCDF.

Lifetime(h): Consultar las horas de servicio del láser (vida útil del láser).

Location: Establecer/consultar el ubicación en la que se usa el equipo. El nombre del equipo está limitado a un máximo de 31 caracteres, \/:*?" <> | _ # % no están permitidos.

Longitude: Longitud geográfica de la ubicación, decimal, orientación al este positiva, ejemplo Berlin: 13,40833 (corresponde a 13° 24' 30" E).

MaxCrossTalkChars: Número de caracteres que ignora el CHM 15k dentro del intervalo temporal "TimeOutRS485(s)", cuando no acaba en <EOT> (04 HEX), <CR> (0D HEX), <LF> (0A HEX). El parámetro se ha implementado para evitar que el ceilómetro trabaje con la tasa de baudios estándar debido a fallos por líneas de comunicación inestables.

Parameters: Consulta de la lista de parámetros completa.

RS485Number: Designa el número de identificación en un sistema de bus, que es necesaria para seleccionar un dispositivo determinado a través de una interfaz de datos. Además de la dirección específica, cada dispositivo responde al número de identificación universal 99.

Standby: Apaga el láser, la calefacción y los ventiladores.

SystemStatusMode: Define la variante de código de estado que debe utilizarse en los telegramas de datos. 0 = códigos de estado anteriores utilizados en el firmware 1.x del CHM 15k, 1 = códigos de estado escalables, ver apartado 8.5 Código de estados.

TimeOutRS485(s): Establecer un intervalo temporal para MaxCrossTalkChars y BaudAfterError estándar 30 s).

Time Zone offset hours: Debe configurarse para corregir la hora nocturna local, p. ej., para apagar los ventiladores por la noche. El sistema trabaja con la hora UTC.

TransferMode: Ver 8.3.1 Modo de polling hasta 8.3.5 Telegrama de datos en bruto.

Unit(m/ft): Indicación de las magnitudes objetivo en metros (m) o pies (ft).

UseAltitude: Incluir la altitud (m) en la salida de datos. Con una altitud establecida de 60 m, p. ej., la base de las nubes se reduce en 60 m, cuando UseAltitude es 1 (true).

Zenith: Indicación del ángulo vertical en grados. El Sky-Condition-Algorithm (SCA) utiliza este ángulo para calcular la altura real de la base de las nubes.

8.2 Configuración del equipo con RS485

El usuario puede cambiar la configuración a través de la interfaz RS485:

- Para controlar los procesos de medición.
- Para configurar las interfaces de comunicación.

8.2.1 Consultar un parámetro

Los parámetros se pueden consultar mediante el comando:

get<SPACE><RS485Number>:<ParameterName><CR><LF>

Si <ParameterName> es una denominación válida según Table 4 o Tabla 5 , el valor se devuelve mediante

<STX>get<SPACE><Device>:<ParameterName>=<Value>;<ASCIITwo'sComplement><CR><LF><E OT>

Ejemplo con el RS485Number estándar 16 y el nombre de equipo CHM060003: Mediante el comando corto

get 16: DVN<CR><LF>

se puede consultar la denominación del equipo y la respuesta es, p. ej.:

<STX>get 16:DeviceName=CHM060003;3F<CR><LF><EOT>.

Cada uno de los caracteres no imprimibles <STX>, <CR>, <LF> y <EOT> representa un byte con los códigos hexadecimales 02, 0D, 0A y 04. Los caracteres 3F representan las sumas de control del complemento a dos, que se forma a partir de toda la línea de respuesta, salvo estos dos caracteres (3F) según los formatos de respuesta del registro (ver 8.3.3 Telegrama de datos estándar hasta 8.3.5 Telegrama de datos en bruto).

8.2.2 Establecer un parámetro

El parámetro de configuración se modifica con el comando:

set<SPACE><RS485Number>:<ParameterName>=<Value><CR><LF>

Si la modificación se ha realizado con éxito aparece la confirmación:

<STX>set<SPACE><RS485Number>:<ParameterName>=<Value*>;<ASCIITwo'sComplement><CR ><LF><EOT>

Si el parámetro <value> del comando de consulta se encuentra dentro de los límites del rango de valores permitido, significa que el nuevo valor <value*> configurado también corresponde a este parámetro. Si los valores son demasiado pequeños (grandes), se utilizará el mínimo (máximo) del rango permitido. Si los valores de <value> son alfanuméricos se utiliza el valor estándar.

Ejemplo con RS485Number = 16: Mediante el comando

set 16:Unit(m/ft)=ft<CR><LF>

o el comando corto

set 16:UNT=ft<CR><LF>

se cambia la unidad de medida de todos los valores de altura en la respuesta de registro del estándar metros (m) a pies (ft). Puesto que la Unit(m/ft) es un parámetro modificable, debe confirmarse con

<STX>set 16:Unit(m/ft)=ft;2A<CR><LF><EOT>

. El valor 2A es la suma de control de la línea de respuesta.

8.2.3 Cambio de la tasa de baudios

El cambio de la tasa de baudios es un caso particular. El cambio se realiza igual que en 8.2.2Establecer un parámetro. Es decir, con

set<SPACE><RNO>:Baud=4<CR><LF>

se establece la tasa de baudios n.º 4 (correspondiente a 19.200 bit/s).

La correspondencia entre los números de tasas de baudios # y la tasa de baudios se muestra en Tabla 6.

Tasa de baudios #	Tasa de baudios [bit/s]
(0)	(1200)
(1)	(2400)
2	4800
3	9600
4	19200

5	38400
6	57600
7	115200

Tabla 6 Correspondencia entre el número de tasa de baudios y la tasa de baudios.

Las tasas de baudios 0 y 1 no están especificadas dentro del límite de tiempo. Después de enviar el comando set, la interfaz adopta inmediatamente la nueva tasa de baudios. Si la tasa de baudios no se establece correctamente, posteriormente se generarían errores de transmisión y un reset normal no sería posible debido a una capacidad de comunicación deficiente.

Una vez transcurrido el intervalo temporal definido en **TimeOutRS485** (valor estándar: 30 s), se corrige la tasa de baudios incorrecta y se establece en el valor definido en el parámetro **BaudAfterError**. De esta forma se asegura que el usuario puede recuperar el control sobre el equipo después de este tiempo de espera. El valor estándar de **BaudAfterError** es de 3, correspondiente a 9600 bits/segundo. El usuario debería cambiar este valor estándar cuando la tasa de baudios que se emplea habitualmente es de 19200, por ejemplo.

8.2.4 Reinicio del sistema embebido Linux/configuración de fábrica

Mediante el comando

set<SPACE><RS485Number>:Reset=1<CR><LF>

se solicita el reinicio inmediato del PC interno. El reinicio dura menos de un minuto. Durante ese tiempo no se puede comunicar con el CHM 15k, ni se realiza el envío automático de los telegramas.

Mediante el comando

set<SPACE><RS485Number>:ResetSettings=1<CR><LF>

se restablecen los valores de fábrica de todos los parámetros.

El comando RSN reinicia la red. El reinicio siempre es necesario cuando se haya modificado la configuración de la red, p. ej., la dirección IP, el modo DHCP, etc. La nueva configuración de la red solo se aplica tras ejecutar los comandos RSN o RST.

set<SPACE><RS485Number>:RSN=1<CR><LF>

8.2.5 Cambio de la configuración de tiempos

set<SPACE><RS485Number>:dts=30<CR><LF>

El tiempo de inicio de sesión y de informe está establecido en 30 segundos. El tiempo de medición interna siempre está establecido en un segundo. El tiempo de inicio de sesión y de informe debe ser un múltiplo de un segundo.

Mediante el comando

set<SPACE><RS485Number>:DateTime=DD.MM.YYYY;hh:mm:ss<CR><LF>

se cambian la fecha y la hora del PC interno. DD = día, MM = mes y YYYY = año, hh = hora, mm = minuto y ss = segundo en el huso horario GMT (Greenwich Mean Time).

Ejemplo con RS485Number = 16:

set 16:DateTime=13.04.2006;17:22:46<CR><LF>

establece la fecha en el 13/04/2006 y la hora en 17:22:46 GMT.

8.3 Consulta de datos RS485

Cuando el CHM 15k está funcionando, se encuentra siempre en uno de los modos de transferencia descritos en Tabla 7.

Modo de transferencia	Significado
0	Los telegramas de datos solo se envían previa solicitud concreta
1	Envío automático del telegrama de datos estándar
2	Envío automático del telegrama de datos ampliado
3	Envío automático del telegrama de datos en bruto
4 9	Envío automático de otros telegramas de datos predefinidos

Tabla 7 Resumen de los diferentes modos de transferencia.

El modo de transferencia se puede cambiar con el comando set

set <RS485Number>:TMO=x

tal y como se describe en el apartado 8.2.2 Establecer un parámetro, o bien directamente a través de la interfaz web.

Es decir, con

set<SPACE>16:TransferMode=1<CR><LF>

se activa la configuración estándar de fábrica para el equipo con el número RS485 16 (envío automático del telegrama de datos estándar).

8.3.1 Modo de polling

Mediante el comando

set<SPACE><RS485Number>:TransferMode=0<CR><LF>

se activa el modo de polling y se desactiva el envío automático de telegramas, posiblemente activo en ese momento. Mediante los tres comandos

get<SPACE><RS485Number>:S<CR><LF>

get<SPACE><RS485Number>:L<CR><LF>

get<SPACE><RS485Number>:A<CR><LF>

se solicita una sola vez el telegrama de datos estándar (S), el telegrama de datos ampliado (L) o el telegrama de datos en bruto (A), respectivamente. Para más detalles sobre el formato de cada uno de los telegrama de datos, ver 8.3.3 Telegrama de datos estándar a 8.3.5 (Tabla 8, Tabla 9, Tabla 12).

Telegramas adicionales

La plataforma de hardware Nimbus del CHM 15k (a partir de 2011) soporta otros telegramas de usuario. Además de los caracteres {S, L, A}, también soporta los números. Los primeros tres números están predefinidos con S = 1, L = 2, A = 3.

8.3.2 Modo de salida automática

Mediante el comando

set<SPACE><RS485Number>:TransferMode=1<CR><LF>

se establece el modo automático con envío te telegramas estándar. En intervalo de repetición depende de la variable dt(s), cuyo valor estándar es de 15 segundos. Tabla 8 incluye el formato del telegrama de datos estándar.

El envío del telegrama de datos ampliado se realiza mediante el comando

set<SPACE><RS485Number>:TransferMode=2<CR><LF>

Tabla 9 incluye el formato del telegrama de datos ampliado.

El envío del telegrama de datos en bruto se realiza mediante el siguiente comando:

set<SPACE><RS485Number>:TransferMode=3<CR><LF>

Tabla 12 incluye el formato del telegrama de datos en bruto.

Modos de transferencia 4 ... 9 Los modos de transferencia 4 ... 9 son otros telegramas predefinidos.

8.3.3 Telegrama de datos estándar

El telegrama de datos estándar consta de 96 bytes. Los datos están separados por espacios (20 HEX). Tabla 8 muestra la estructura exacta de la cadena para el formato de mensaje.

Byte	Valor ¹	Descripción
0	<stx></stx>	20 HEX
1	Х	
2	1	
3, 4	ТА	
5	<space></space>	20 HEX
6	8	
7	<space></space>	20 HEX
8-10	***	Intervalo de salida [s]
11	<space></space>	20 HEX
12-19	** ** **	Fecha (dd.mm.yy)
20	<space></space>	20 HEX
21-25	** **	Hora (hh:mm)
26	<space></space>	20 HEX
27-31	****	Base de las nubes 1, ver apartado 9.3
32	<space></space>	20 HEX
33-37	****	Base de las nubes 2
38	<space></space>	20 HEX
39-43	****	Base de las nubes 3
44	<space></space>	20 HEX
45-48	****	Profundidad de penetración del haz láser en la primera capa de nubes, ver apartado 9.4
49	<space></space>	20 HEX
50-53	****	Profundidad de penetración del haz láser en la segunda capa de nubes
54	<space></space>	20 HEX
55-58	****	Profundidad de penetración del haz láser en la tercera capa de nubes
59	<space></space>	20 HEX
60-64	****	Visibilidad vertical, ver el apartado 9.7
65	<space></space>	20 HEX
66-70	****	Rango de detección máximo, ver el apartado 9.6
71	<space></space>	20 HEX
72-75	+***	Offset de altura de nubes (altitud)

Byte	Valor ¹	Descripción
76	<space></space>	20 HEX
77, 78	**	Unidad (ft/m), ft o m <space></space>
79	<space></space>	20 HEX
80, 81	**	Sky condition index, ver el apartado 9.11
82	<space></space>	20 HEX
83-90	*****	Estado del sistema: código de estado de 32 bit; ver el apartado 8.5
91	<space></space>	20 HEX
92, 93	**	Suma de control (complemento a dos de la suma de los bytes de 0 a 96 salvo los bytes 92 y 93, expresado en código hex)
94	<cr></cr>	0D HEX
95	<lf></lf>	0A HEX
96	<eot></eot>	04 HEX

Tabla 8 Formato del telegrama estándar; * = cualquier caracter

En el telegrama estándar se incluyen hasta tres capas de nubes. Si se detectan menos de tres alturas de nubes, en los demás campos aparece el mensaje **NODET**. Si no se determinan las profundidades de penetración en las nubes, en los correspondientes campos aparece el mensaje **NODT**.

También se introduce el valor **NODET** en los campos cuando el algoritmo no puede calcular los siguientes valores:

- Visibilidad
- Rango de detección máximo

Si los valores no se pueden determinar por un error del equipo, en los campos se introduce el signo negativo "-" o la barra inclinada "/". Encontrará información detallada sobre el tipo de error de equipo en los códigos de estado (ver 8.5 Código de estado).

Corrección de la altura de nubes medida

Generalmente, la altura de nubes se mide desde la base del equipo. Cuando en el parámetro "altitude(m)" se establece un valor distinto de cero y "usealtitude" se pone a 1, la altura de nubes se corrige aplicando este factor. En lugar del eje vertical relativo se utiliza un eje vertical absoluto. En los datos NetCDF es la variable CHO que indica si se ha establecido el parámetro "usealtitude".

8.3.4 Telegrama de datos ampliado

El telegrama de datos ampliado consta de 240 bytes, siempre y cuando se haya establecido el valor estándar para el número de capas de nubes enviado, ver Tabla 9. El número de capas de nube se indica en el parámetro "Layer (NoL)", ver Table 4. En el telegrama de datos ampliado se usa como separador un punto y coma (3B HEX) en lugar del espacio (20 HEX).

Byte	Valor ¹	Descripción			
0	<stx></stx>	20 HEX			
1	Х				
2	1				
3, 4	ТА				
5	;	3B HEX			
6	8				
7	- ,	3B HEX			
8-10	***	Intervalo de salida [s]			
11	;	3B HEX			
12-19	** ** **	Fecha (dd.mm.yy)			
20	;	3B HEX			
Byte	Valor ¹	Descripción			
---------	--------------------	--	--	--	--
21-28	**.**.**	Hora (hh:mm:ss)			
29	•	3B HEX			
30	*	Número de capas			
31	•	3B HEX			
32-36	****	Capa de nubes 1 (CBH)			
37	;	3B HEX			
38-42	****	Capa de nubes 2 (CBH)			
43	;	3B HEX			
44-48	****	Capa de nubes 3 (CBH)			
49	;	3B HEX			
50-54	****	Profundidad de penetración del haz láser en la primera capa de nubes (CPD), ATENCIÓN: ampliación a 5 dígitos			
55	;	3B HEX			
56-60	****	Profundidad de penetración del haz láser en la segunda capa de nubes (CPD), ATENCIÓN: ampliación a 5 dígitos			
61	;	3B HEX			
62-66	****	Profundidad de penetración del haz láser en la tercera capa de nubes (CPD), ATENCIÓN: ampliación a 5 dígitos			
67	;	3B HEX			
68-72	****	Visibilidad vertical (VOR)			
73		3B HEX			
74-78	****	Rango de detección máximo (MXD)			
79	;	3B HEX			
80-83	****	Offset de altura de nubes/altitud (m) o (ft)			
84	;	3B HEX			
85-86	**	Unidad en m o ft			
87		3B HEX			
88-89	**	Precipitation index / Sky condition index (SCI)			
90	;	3B HEX			
91-98	*****	Estado del sistema: Código de estado de 32 bits, ver 8.5 Código de estado			
99	•	3B HEX			
100-101	**	RS485 número de identificación del CHM 15k en el sistema de bus RS485, error es 16			
102	;	3B HEX			
103-111	CHMYYnnnn	Nombre de equipo, (yy es año, nnnn es número de serie)			
112	;	3B HEX			
113-117	****	Desviación estándar primera capa de nubes (CBE)			
118	;	3B HEX			
119-123	****	Desviación estándar segunda capa de nubes (CBE)			
124	;	3B HEX			
125-129	****	Desviación estándar tercera capa de nubes (CBE)			
130	;	3B HEX			
131-134	****	Desviación estándar profundidad de penetración del haz láser en la primera capa de nubes (CDE)			
135	;	3B HEX			
136-139	***	Desviación estándar profundidad de penetración del haz láser en la segunda capa de nubes (CDE)			

Byte	Valor ¹	Descripción			
140	;	3B HEX			
141-144	****	Desviación estándar profundidad de penetración del haz láser en la tercera capa de nubes (CDE)			
145	- ,	3B HEX			
146-150	****	Desviación estándar visibilidad vertical (VOE)			
151	;	3B HEX			
152-155	****	Versión de software FPGA			
156	;	3B HEX			
157-160	****	Versión de software para el procesamiento de señales OMAP			
161	;	3B HEX			
162-163	**	Estado del sistema: "OK" o "ER"			
164	;	3B HEX			
165-168	****	Temperatura exterior (Kelvin x 10)			
169	;	3B HEX			
170-173	****	Temperatura interior (Kelvin x 10)			
174	;	3B HEX			
175-178	****	Temperatura del detector (Kelvin x 10)			
179	;	3B HEX			
180-183	****	Tensión de regulación del detector (voltios x 10)			
184	;	3B HEX			
185-188	****	Altura de pulso de prueba			
189	;	3B HEX			
190-195	*****	Horas de servicio del láser (h)			
196	;	3B HEX			
197-199	***	Estado de los cristales			
200	- ,	3B HEX			
201-205	****	Tasa de repetición del láser (PRF) (5 dígitos)			
206	;	3B HEX			
207-209	***	Estado del receptor			
210	;	3B HEX			
211-213	***	Estado de la fuente de luz			
214	;	3B HEX			
215-219	****	Capa de aerosoles 1			
220	;	3B HEX			
221-225	****	Capa de aerosoles 2			
226	;	3B HEX			
227	*	Índice de calidad capa de aerosoles 1			
228	;	3B HEX			
229	*	Índice de calidad capa de aerosoles 2			
230	;	3B HEX			
231	*	BCC; Base Cloud Cover			
232	;	3B HEX			
233	*	TCC; Total Cloud Cover			
234	,	3B HEX			
235-236	**	Suma de control (complemento a dos de la suma de los bytes de 0 a 239, expresado en código HEX, salvo los bytes 235 y 236)			
237	<cr></cr>	0D HEX			
238	<lf></lf>	0A HEX			

Byte	Valor ¹	Descripción
239	<eot></eot>	04 HEX

Tabla 9 Formato del telegrama de datos ampliado (ver también Tabla 10); * = cualquier caracter.

En las desviaciones estándar indicadas para las diferentes magnitudes se consideran los mismos valores de excepción "NODET/NODT/---" que en las magnitudes básicas correspondientes (ver 8.3.3Telegrama de datos estándar).

Otros parámetros de sistema

Los parámetros de sistema para la evaluación de datos como la profundidad de penetración, por ejemplo, se explican en el capítulo 9Evaluación de datos / Sky Condition Algorithm (SCA).

Denominación	Descripción
Temperatura exterior	Es la temperatura exterior medida en la base del equipo. Los valores medidos se indican en Kelvin x 10. Tolerancia de error ± 5 K
Temperatura interior	Temperatura medida en el sensor: indicación en Kelvin x 10 tolerancia de error ± 2 K
Temperatura del detector	Temperatura medida en el sensor: indicación en Kelvin x 10 tolerancia de error ± 2 K
NN1	sin asignar
NN2	sin asignar
Horas de servicio del láser (h)	Tiempo de servicio del láser en horas
Estado de los cristales	Grado de suciedad del cristal en porcentaje 100 = transparente, 0 = opaco
Tasa de repetición del láser	Número de pulsos de láser por intervalo de medición (7 dígitos)
Estado del receptor	Valoración del estado del recorrido óptico y del receptor 100 = sensibilidad máxima 0 = ya no hay sensibilidad
Estado de la fuente de luz	Valoración del tiempo de vida y la estabilidad de la fuente de luz Temperatura, estabilidad actual, tasa de repetición; 100% = valor inicial, ≤ 20% = el láser se apaga

Tabla 10 Denominaciones en el telegrama de datos ampliado

8.3.5 Telegrama de datos en bruto

Los datos en bruto se proporcionan en el formato NetCDF (ver descripción en 8.4 Estructura del formato NetCDF). NetCDF es un formato binario. Para la transmisión a través de RS485/RS232 se requiere una codificación ASCII de 7 bits (rango de 21 a 60 HEX) con UUencode para leer los caracteres especiales como <STX> y <EOT>.

El archivo NetCDF de un registro de datos en bruto tiene el volumen aprox. de 14 kbyte. La conversión mediante UUencode lo convierte en 20 kbytes de datos ASCII que se tienen que transmitir. Con una tasa de baudios de 9600 bit/s, el tiempo de transmisión es de aprox. 16 segundos. El envío automático del telegrama de datos en bruto está limitado a determinados intervalos de informe con determinadas tasas de baudios, tal y como se resume en Tabla 11.

Tasa de baudios n.⁰	Tasa de baudios [bit/s]	Intervalo temporal de registro [dt(s)]
0	1200	no es posible
1	2400	no es posible
2	4800	≥ 40 s
3	9600	≥ 20 s
4	19200	≥ 10 s
5	38400	≥5 s
6	57600	no hay más limitaciones
7	115200	no hay más limitaciones

Tabla 11 Tasa de baudios. Limitaciones del intervalo de registro

Tabla 12 describe la estructura de los datos adicionales del telegrama de datos en bruto.

Byte	Valor ¹	Descripción
0-238		Exactamente como en el diagrama de datos ampliado (para 3 capas de nubes)
239	<cr></cr>	0D HEX
240	<lf></lf>	0A HEX
241-(eeee-5)		Datos en bruto en formato ASCII (UUencode)
eeee-4 eeee-3	**	Suma de control (complemento a dos de la suma de los bytes de 0 a eeee salvo los bytes eeee-4 y eeee-3, expresado en código hex)
eeee-2	<cr></cr>	0D HEX
eeee-1	<lf></lf>	0A HEX
eeee	<eot></eot>	04 HEX

Tabla 12 Formato del telegrama de datos en bruto; * = cualquier caracter

El caracter * representa un caracter ASCII UUencode del rango HEX 21-60. La "M" (HEX 4D) al principio de las líneas de datos representa el número de bytes de datos de esta línea, igualmente codificado con UUencode:

- 4D descodificado corresponde al número HEX 2D = 45 decimal.

Los 45 bytes se codifican mediante la conversión 4UUencode de 4/3 en 60 caracteres ASCII (60 = 45/3 x 4), que siguen a "M". La última línea es una excepción porque contiene los últimos bytes codificados, que generalmente suelen ser menos de 45.

En el ejemplo de antes aparece "E" (HEX 45, descodificado HEX 25 = 37 decimal), por lo que siguen 37 bytes de datos en bruto, que ocupan 52 ($52 = (37/3 \text{ redondeado}) \times 4$) caracteres ASCII debido a la codificación 4/3 (redondeado a un múltiplo de 4 caracteres). La entrada "end" de la última línea marca el final de los datos UUencode.

Ejemplo del nombre de archivo que aparece en la primera línea

YYYYMMDDhhmmss [Location] [DeviceID].nc

por ejemplo, es 20060331123730_Berlin_CHM060003.nc (ver 8.4.3) Significa:

- equipo CHM060003 en Berlín, datos del 31/03/2006, 12:37:30.

8.3.6 Otros telegramas de datos

La estructura de los diagramas de datos se define en el archivo "telegram.xml". El archivo se puede descargar a través de la interfaz web con acceso de superuser, modificar y volver a cargar con acceso de usuario de service.

El firmware incluye ya algunos telegramas de usuario predefinidos:

- Telegrama 4: telegrama 2 + estado de ventiladores y calefacción y los 8 campos de comentarios (de COM a CM7). Ahora la longitud del telegrama es variable y los comentarios ocupan el espacio adaptado a su longitud.
- Telegrama 5: telegrama 1 + representación diferente de "altitude(m)" + estado de ventiladores y calefacción
- Telegrama 8: telegrama de datos 1 CT25k de Vaisala
- Telegrama 9: telegrama de datos 6 CT25k de Vaisala

Para los telegramas de usuario predefinidos se dispone de una descripción específica. Los telegramas están sujetos a modificaciones.

8.4 Estructura del formato NetCDF

8.4.1 Generalidades

El ceilómetro guarda todos los datos de perfiles de retrodispersión registrados en un archivo diario en formato NetCDF (Network Common Data File). La capacidad de memoria de la tarjeta SD de 8 GB integrada permite guardar los archivos durante un año. El acceso a los archivos se realiza a través de una interfaz web (conexión LAN). En el caso de la incidencia "Comunicación interrumpida" se pueden consultar y trazar los datos afectados. Además se pueden consultar los datos en bruto de una medición concreta como telegrama de datos en bruto a través de la interfaz RS485 o LAN. En el funcionamiento no está previsto transmitir más de una medición individual, porque incidiría negativamente en la secuencia temporal de este modo operativo. La transmisión tardaría demasiado porque la velocidad de transmisión depende de la resolución temporal de los datos de medición y la configuración de la interfaz RS485. Un archivo diario NetCDF con unos intervalos temporales de medición de dt(s)=30s tiene un tamaño aprox. de 12 MB. Si el intervalo temporal se establece en 15 s se generan archivos diarios de 24 MB. La interfaz LAN permite acceder directamente a los archivos diarios, los archivos de 5 min. (modo AFD (ftp)), y solicitar archivos individuals.

8.4.2 Principios básicos

El formato NetCDF ofrece una interfaz para guardar y consultar datos científicos, independiente de la plataforma informática. Ha sido desarrollado por Unidata, un proyecto apoyado por la National Science Foundation (<u>http://www.unidata.ucar.edu</u>). Cada registro de datos incluye explicaciones sobre el contenido guardado en el mismo.

El ceilómetro guarda todos los datos de un día en un archivo, o bien en archivos de 5 min., si funciona en el modo ftp. El huso horario empleado es UTC. En el modo operativo estándar (RS485), el CHM 15k transmite un telegrama de datos en bruto en formato NetCDF, con un único perfil de retrodispersión y todos los variables y atributos descriptivos. Los diferentes telegramas de datos en bruto de un día se pueden resumir en un archivo diario.

8.4.3 Nombres de archivo

Archivo diario:	YYYYMMDD_[Location]_[DeviceID]_[Index].nc
Datos en bruto en RS485 Telegrama:	YYYYMMDDhhmmss_[Location]_[DeviceID].nc
Datos en bruto con una resolución temporal de 5 minutos para el mdo ftp (AFD)	YYYYMMDDhhmmss_[Location]_[DeviceID]_hhmm_Index.nc

Longitud de nombres de archivos

Para asegurar la correcta transmisión de los archivos debe respetarse el estándar ISO ampliado, es decir, la longitud máxima de los nombres de archivo es de 31 caracteres. Para la estructura de los archivos diarios con [fecha]_[ubicación]_[identificación de equipo]_[índice].nc (8_5_9_3.2=31 caracteres) significa que el nombre de la ubicación no puede tener una longitud superior a 5 caracteres.

8.4.4 Estructura del formato

En el formato NetCDF, los valores se definen y guardan en forma de dimensiones, variables y atributos. En las tablas de Tabla 13 a Tabla 15 se describen las denominaciones utilizadas.

Dimensiones

Dimensión	Descripción	Estándar
time	Número de perfiles de retrodispersión medidos en un archivo NetCDF	UNLIMITED
range	Número de puntos medidos y guardados en perfiles de retrodispersión en formato NetCDF, con una resolución de 5 30 m según configuración, el estándar es de 15 m.	534
range_hr	Número de puntos guardados en el perfil de retrodispersión de alta resolución con una resolución de 5 m.	32
layer	Número de capas de nubes convertidas en telegramas y guardadas en archivos NetCDF	3

Tabla 13 Dimensiones en el archivo NetCDF.

Atributos globales

Atributo	Descripción				
title	Título de la representación gráfica, p. ej., "Lufft Berlin, CHM 15k".	texto			
source	ver nombre de equipo (incluido por razones de compatibilidad)	texto			
device_name	Número de serie, nombre del equipo	texto			
serlom	Número de serie de la unidad de medición, p. ej., TUB190001	texto			
day	Día del mes en que se han medido los datos.	int			
month	Mes en formato numérico, enero = 1,	int			
year	Año en que se han registrado los datos, p. ej., 2019	int			
location*	Ubicación/lugar de medición	texto			

institution*	Instituto o empresa.			
wmo_id*	ID de estación WMO	int		
software_version	Linux Kernel, software FPGA, firmware	texto		
comment*	Comentario descriptivo	texto		
overlap_file	Nombre/hora de la función de corrección de solapamientos para generar las variables beta	texto		

Tabla 14 Atributos globales en el NetCDF; *configuración definida por el usuario.

Variables

Variable	Тіро	Dim.	Unidad	Denominación	Escala
time	double	time	seconds since 1904-01-01 00:00:00.000 00:00	Hora final de la medición (UTC)	
range	float	range	m	Distancia de medición desde el equipo (independiente de la orientación y altitud del lugar de instalación)	
range_hr	float	range_h r	m	Distancia de medición desde el equipo para una alta resolución	
layer	int	layer		Índice de las capas (layer)	
latitude	float		degrees_north	Latitud geográfica del lugar de instalación	
longitude	float		degree	Longitud geográfica del lugar de instalación	
azimuth	float		degree	Ángulo azimut del equipo (dirección que señala el láser)	
zenith	float		degree	Ángulo zenit del equipo (dirección que señala el láser)	
altitude	float		m	Altitud de instalación del equipo sobre el nivel del mar	
wavelength	float		nm	Longitud de onda del láser en nm	
average_time	int	time	ms	Tiempo de promediación por cada entrada	
range_gate	float		m	Resolución espacial de la medición	
range_gate_hr	float		m	Resolución espacial de la medición de alta resolución	
life_time	int	time	h	Horas de servicio del láser	
error_ext	int	time		Código de estado de 32 bits	
state_laser	byte	time	percent	Índice de calidad del láser	
state_detector	byte	time	percent	Calidad del detector de señal	
state_optics	byte	time	percent	Índice de calidad óptica	
temp_int	short	time	К	Temperatura interior del armario	0.1
temp_ext	short	time	К	Temperatura exterior del armario	0.1
temp_det	short	time	К	Temperatura del detector	0.1
temp_lom	short	time	к	Temperatura de la unidad de medición	0.1
laser_pulses	int	time		Número de pulsos láser ponderados de una medición (lp)	

Variables

Variable	Тіро	Dim.	Unidad	Denominación	Escala
p_calc	short	time	counts	Pulso de calibración (normalización de la unidad de medición con el factor tiempo)	0.00001
scaling	float			Factor de escalada (normalización de las unidades de medición entre sí (cs)	
base	float	time	counts	Altura de baseline de la señal en bruto (influida sobre todo por la luz diurna) (b)	
stddev	float	time	counts	Desviación estándar señal en bruto	
beta_raw	float	time range		Señal de retrodispersión normalizada corregida por rango ((P_raw / lp) - b) / (cs * o(r) * p_calc) * r * r, with P_raw = sum(P_raw_hr) * range_gate_hr / range_gate	
beta_raw_hr	float	time range_h r		Señal de retrodispersión normalizada de alta resolución corregida por rango ((P_raw_hr / lp) - b) / (cs * o(r) * p_calc) * r * r	
pbl	short	time layer	m	Capas de aerosoles	
pbs	byte	time layer		Índice de calidad para las capas de aerosoles (1: buena, 9: mala)	
tcc	byte	time		Grado de cobertura (total)	
bcc	byte	time		Grado de cobertura de la capa de nubes inferior	
sci	byte	time		Sky Condition Index (0: sin precipitación, 1: Iluvia, 2: niebla, 3: nieve, 4: precipitación o partículas en la ventanilla)	
vor	short	time	m	Visibilidad vertical	
voe	short	time	m	Imprecisión de la visibilidad vertical determinada	
mxd	short	time	m	Rango de detección máximo	
cbh	short	time layer	m	Altura de la base de las nubes	
cbe	short	time layer	m	Imprecisión de la base de las nubes calculada	
cdp	short	time layer	m	Profundidad de penetración en las nubes	
cde	short	time layer	m	Imprecisión de la profundidad de penetración en las nubes calculada	
cho	short		m	Offset de altura (considerado en cbh, mxd, vor y pbl; corresponde a altitude cuando usealtitude=1, en los demás casos 0)	
nn1	short	time		nn1	
nn2	short	time		nn2	

Variables

Variable	Тіро	Dim.	Unidad	Denominación	Escala
nn3	short	time		nn3	

Tabla 15 Variables en el archivo NetCDF.

8.5 Código de estados

Existen dos variantes de código de estado. Cada una de ellas representa el estado del equipo en forma de un número de 32 bits. La Tabla 16 contiene una lista con el significado de los diferentes bits de los códigos de estado conocidos del CHM 15k. Esta variante del código de estado se proporciona a través de la interfaz web y los archivos NetCDF. Opcionalmente, se dispone del código de estado escalable (ver el apartado 8.5.1) para proporcionar en los telegramas de datos, por ejemplo, los caracteres de 83 a 90 en el telegrama estándar, y los caracteres 91 a 98 en el telegrama ampliado (ver Tabla 8 y Tabla 9).

Los códigos de estado se representan como números hexadecimales de ocho dígitos. Los bits no activados significan que la parte representada funciona correctamente. Los bits activados indican errores/advertencias/información o inicializaciones en curso, p. ej., justo después del arranque del sistema.

Bit	Hex	Тіро	Error		
0	00000001	Error	Error: Calidad de la señal		
1	0000002	Error	Error: Recepción de la señal		
2	0000004	Error	Error: Valores de señal cero o no válidos		
3	80000008	Error	Error: Error al determinar la versión de la placa base (bias APD)		
4	00000010	Error	Error: Crear nuevo archivo NetCDF		
5	0000020	Error Error: Escribir/añadir al archivo NetCDF			
6	00000040	Error Error: El telegrama RS485 no se puede generar/transmitir			
7	00000080	Error	Error: Falta la tarjeta SD o está defectuosa		
8	00000100	Error	Error: Error al controlar la alta tensión del detector/cable defectuoso o ausente		
9	00000200	Advertencia	Advertencia: Temperatura del armario interior fuera de rango		
10	00000400	Error	Error: Error de temperatura unidad de medición		
11	00000800	Error	Error: Trigger de láser no reconocido o láser desconectado por motivos de seguridad		
12	00001000	Error	Error: Firmware no es compatible con la versión de CPU		
13	00002000	Error	Error: Controlador de láser		
14	00004000	Error	Error: Temperatura del cabezal láser		
15	0008000	Advertencia Advertencia: Sustituir el láser por envejecimiento			
16	00010000	Advertencia	Advertencia: Calidad de la señal: elevado nivel de ruido		
17	00020000	Advertencia	Advertencia: cristales sucios		
18	00040000	Advertencia	Advertencia: Procesamiento de señales		

Bit	Нех	Тіро	Error
19	00080000	Advertencia	Advertencia: Detector de láser mal orientado o ventanilla de recepción sucia
20	00100000	Advertencia	Advertencia: Sistema de archivos, fsck repara sectores defectuosos
21	00200000	Advertencia	Advertencia: Restablecer tasa de baudios RS485/modo de transferencia
22	00400000	Advertencia	Advertencia: Problema de AFD
23	0080000	Advertencia	Advertencia: Problema de configuración
24	01000000	Advertencia	Advertencia: Temperatura de la unidad de medición
25	02000000	Advertencia	Advertencia: Temperatura exterior
26	0400000	Advertencia	Temperatura del detector fuera de rango
27	08000000	Advertencia	Advertencia: Salida general de láser
28	1000000	Aviso	Aviso: NOL>3 y telegrama estándar seleccionados
29	20000000	Aviso	Aviso: Se ha reiniciado el equipo
30	4000000	Aviso	Aviso: Modo standby activado

Tabla 16 Códigos de estado/bits de estado.

Los bits no utilizados hasta el momento se ponen por defecto a 0, por lo que el código de estado hexadecimal 0 indica la plena operatividad del CHM 15k.

8.5.1 Códigos de estado escalables

En 2018 se ha implementado un código de estado adicional. Está dividido en los siguientes ocho grupos:

- 1. Configuración
- 2. Transmisión y almacenamiento de datos
- 3. Temperaturas
- Cálculo/procesamiento en el Sky Condition Algorithm
 Láser y pulso de prueba LED
 Detector (receptor)

- 7. Sensor de suciedad de la ventanilla
- 8. No disponible

Cada grupo tiene asignado una posición en la representación hex del código de estado de 32 bits. Por ejemplo, la información, las advertencias y errores relativos a las temperaturas (grupo 3) ocupan el tercer dígito de la derecha, es decir, xxxxxTxx.

En cada grupo solo se representa el error con la mayor prioridad, es decir, el mayor código de error en el código de estado.

La configuración SystemStatusMode (SSM) permite determinar la variante del código de estado que se utilizará en telegrama enviado. De fábrica, el CHM 15k utiliza los códigos de estado estándar.

In la Tabla 16 se describen el significado y la duración de los diferentes códigos de estado.

Group	Código hex	Duración [s]				
1	Configuració					
	xxxx xxx0	Configuración correcta				
	xxxx xxx1	Reinicio después del rearranque o reinicio del FW (SW)	60			

Group	Código hex	Denominación del error	Duración [s]
	xxxx xxx2	Reinicio después de apagar el sistema	60
	xxxx xxx3	Reinicio después del disparo del watchdog (FW)	60
	xxxx xxx4	Reinicio (p. ej., tras un corte eléctrico)	60
	xxxx xxx5	El equipo funciona en standby	delete*
	xxxx xxx6	Parámetro no válido, se utilizará la configuración anterior o corregida	300
	xxxx xxx7	Identificador de formato NetCDF desconocido en archivo de configuración	60
	xxxx xxx8	Número de capas excesivo para telegrama 1	60
	xxxx xxx9	Las dimensiones no son compatibles	∞
	xxxx xxxA	No se ha encontrado ningún archivo overlap válido	×
	xxxx xxxB	EEPROM defectuoso/no disponible o rotura de cable	16
	xxxx xxxC	No se puede leer el identificador de la placa base	∞
	xxxx xxxD	Firmware no es compatible con la versión de CPU	∞
2	Transmisión	y almacenamiento de datos	
		La transmisión y el almacenamiento funcionan	
	xxxx xx0x	correctamente	
	xxxx xx1x	El sistema de archivos FAT defectuoso de la tarjeta SD se ha reparado	60
	xxxx xx2x	Se ha restablecido la tasa de baudios RS485/el modo de transferencia	60
	xxxx xx3x	Problema de AFD	60/ 600
	xxxx xx4x	El telegrama RS485 no se puede transmitir	16
	xxxx xx5x	El telegrama RS485 no se puede generar	16
	xxxx xx6x	Error de escritura en el archivo NetCDF	60
	xxxx xx7x	No se puede crear el nuevo archivo NetCDF	60
	xxxx xx8x	Falta la tarjeta SD o está defectuosa	∞
3	Temperatura	S	
	xxxx x0xx	Las temperaturas son correctas	
	xxxx x1xx	Temperatura del detector fuera del rango de trabajo óptimo (consigna -1 °C +3 °C)	60
	хххх хЗхх	Temperatura de la unidad de medición fuera del rango válido (25 °C 49 °C)	60
	xxxx x4xx	Temperatura interior fuera del rango válido (5 °C 50°C)	16
	xxxx x5xx	Temperatura exterior fuera del rango válido (-35 °C 50 °C)	60
	хххх х6хх	El control de temperatura de la unidad de medición se ha desactivado por motivos de seguridad	16 / ∞
	xxxx x7xx	Temperatura del controlador de láser excesiva	60

Group	Código hex	Denominación del error	Duración [s]
	xxxx x8xx	Temperatura del cabezal láser excesiva o insuficiente	16
	xxxx x9xx	Temperatura de la unidad de medición excesiva	16
	xxxx xAxx	Temperatura del láser fuera del rango de trabajo o no válida	delete*
4	Cálculo/proc	esamiento en el Sky Condition Algorithm	
	xxxx 0xxx	Procesamiento correcto	
	xxxx 1xxx	Problema al calcular la visibilidad	16 / 60
	xxxx 2xxx	Problema al calcular las capas de aerosoles	60
	xxxx 3xxx	Problema al calcular el grado de cobertura	60
	xxxx 4xxx	Problema al calcular las nubes	60
	xxxx 5xxx	Señal anómala	60
	xxxx 6xxx	Dimensionamiento incorrecto de los datos en bruto	16
	xxxx 7xxx	No hay datos nuevos	16
5	Láser v pulso	o de prueba LED	
		El láser y el pulso de prueba LED funcionan normal	
		Problema general del láser	60
	xxx2 xxxx	Pulso de prueba LED igual o inferior a cero	16
		Sustituir láser (envejecimiento)	60
	xxx4 xxxx	Error: Controlador de láser	16
	xxx5 xxxx	Error: Trigger de láser no detectado	16
	xxx6 xxxx	Láser desactivado (por motivos de seguridad)	16 / ∞
6	Detector (rec	eptor)	
	xx0x xxxx	El detector funciona normal	
	xx1x xxxx	Calidad de la señal: pulso de referencia baio	16
	xx2x xxxx	Receptor mal orientado o ventanilla sucia	60
	xx6x xxxx	Valores de señal de receptor cero o en blanco	16
	xx7x xxxx	No existe una señal de prueba de láser suficiente	16
	xx8x xxxx	No hay pulso de ventanilla en la señal de receptor	16
	xxDx xxxx	No hay señal de receptor (¿alimentación del detector o de alta tensión defectuosa?)	16
	xxEx xxxx	No hay señal de receptor (¿cable de alimentación?)	16
	xxFx xxxx	No hay señal de receptor (¿cable de señal?)	16
7	Sensor de su	ciedad de la ventanilla	
	x0xx xxxx	Ventanilla no sucia	
	x1xx xxxx	Ventanilla sucia	60

Tabla 17 Códigos de estado escalables (HW: hardware, SW: software, FW: firmware); *delete: el error se muestra hasta que se haya eliminado la causa del error.

Significado de los colores:						
Todo correcto						
	Información					
	Advertencia					
	Error					

8.6 Actualizar firmware

El software de sistema del CHM 15k se puede actualizar a través de una interfaz Ethernet (conexión WAN/LAN). Para más detalles siga las indicaciones del siguiente apartado *8.7 Comunicación a través* de la interfaz de web/Ethernet. La actualización del software requiere una contraseña de superuser.

8.7 Comunicación a través de la interfaz de web/Ethernet

8.7.1 Resumen del equipo y derechos de acceso (pestaña Device)

Device	Viewer N	etCDF Files	Config System	Config Network	Config RS485	Process Warnings	?		
St	tatus				Status info				
Se	erial Device	CHM	15kd01						
Se	erial Optics	TUBO	80022						
Lo	ocation	Berlin	ı						
S	ystem Time (UT	C) Tue J	ul 16 14:54:42 2019						
H	ardware	CHM Mainl CPU MAC:	15k (8350): 000 board (8350.MCB): (board (8350.MCP): EC:98:6C:0C:00:12	312 552					
Fi	irmware	1.017 chm- OS: 1	7 (Jun 3 2019 10:52 / art v02.13 2012-01-2 7.05.1	4.6.3) 7	Administration			Fadwaar	
0	verlap File	TUB0 (2018)80022 3-02-12 14:44:32)		Code:	Valio	<u>date</u>	Ellu-usei	
La	aser Life Time	6061	3.0						
E	xternal Tempera	ture 20.4							
In	iternal Temperat	ure 28.9							
La	ast Session	10.13	80.65.142 07/16/19 0	6:56:3					
S	ystem Status	0000	0000						
				update					

Figura 16 Interfaz web.

La Figura 16 muestra la pantalla de inicio (pestaña "Device") después de establecer con éxito la comunicación con el equipo (para la puesta en servicio ver el apartado 7.2). Ofrece información sobre el estado actual del equipo. Se puede iniciar la sesión como superuser o usuario de service.

La comunicación con el CHM 15k a través de una conexión Ethernet es rápida, segura e independiente del sistema operativo. El equipo viene provisto de un servidor web Apache. Permite establecer una plataforma de comunicación y configuración a través de la interfaz web para procesar las actualizaciones de firmware, proporcionar una vista breve de los resultados de comunicación y descargar los datos en bruto de un día en formato NetCDF.

Generalmente, la interfaz web incluye los siguientes derechos de acceso:

- Los usuarios finales pueden verificar el estado del instrumento de medición.
- Los superusers pueden además descargar archivos NetCDF, configurar el equipo y descargar el manual de instrucciones actualizado, así como otros archivos de configuración.
- Los usuarios de service pueden actualizar el firmare, establecer el número de serie del equipo, descargar el manual de service actualizado, y cargar los archivos de configuración.

Los informaciones de estado del directorio de equipos y del directorio de advertencias de proceso se actualizan cada minuto y muestran las advertencias y actualizaciones de los errores. Los códigos del estado de información corresponden a los códigos de estado en Tabla 16. La página de advertencias de proceso (Figura 24) ofrece información más detallada para el personal de service.

En los modos de superuser y de service, la página de inicio incluye botones para apagar o arrancar el equipo.

8.7.2 Acceso a los datos de medición (archivos NetCDF, viewer)

La Figura 17 muestra el directorio de archivos NetCDF visibles para todos los usuarios. En los modos de superuser y de service, los archivos NetCDF se pueden descargar mediante doble clic.

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	⊠Lufft
Count:	169			Upda	ate List			
File Na	me			Size [k	3]			
201907	716_Berlin_(CHM15kd01_000.n	ic	15349				
201907	715_Berlin_(CHM15kd01_003.n	ic	8890				

Figura 17 Interfaz web: Archivos NetCDF (superuser).

La Figura 18 muestra el contenido de la pestaña "Viewer", en la que se representan los datos obtenidos durante las últimas 24 horas en intervalos de 5 minutos. Al hacer clic en el botón "Update" se actualiza el archivo de imagen, aunque solo es posible cada 5 minutos. El parámetro "BackscatterMax" de la pestaña "Config System" (ver Figura 21) se puede modificar para adaptar fácilmente la escala de colores. La última medición de las nubes se actualiza con el intervalo de informe dt(s) y se representa en la posición superior.

Manual de instrucciones CHM 15k

R13/07-2019

Figura 18 Interfaz web: Viewer.

8.7.3 Configuración del CHM 15k (pestaña Config)

El acceso a los contenidos de las páginas de configuración ("Config System", "Config Network" y "Config RS485") solo es posible con derechos de superuser o de usuario de service. No obstante, los parámetros también se pueden establecer a través de la comunicación RS485, tal y como se describe en 8.1 Lista de los parámetros configurables.

evice	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	
Net	twork Inform	nation						
Na	me			Address		Netmas	k	
eth	0:2 (dhcp)			10.130.65.15	2	255.255	5.255.0	
eth	0:1 (custom)		10.130.65.12	0	255.255	5.255.0	
eth	n0 (fix)			192.168.100.	101	255.255	5.255.0	
gat	teways		10.1	130.65.2, 10.130.65.	2			
ntp	server		192	.53.103.104				
								update

Figura 19 Interfaz web: Configuración de la red (modo estándar de solo lectura) de un equipo con una IP estática (eth0:1 custom).

Manual de instrucciones CHM 15k

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?		S Luff
Net	twork Inform	ation							
Na	me			Address		Netmask			
eth	0:2 (dhcp)								
eth	0:1 (custom)			10.130.65.120		255.255.25	55.0		
eth	0 (fix)			192.168.100.10	1	255.255.25	55.0		
gat	teways			10.130.65.2					
ntp	server			192.53.103.1	104			update	
Ne	etwork Config	juration							
Dh	ncpMode		0					set	
IPA	Address		10.130.65	.120				set	
Ne	etmask		255.255.2	55.0				<u>set</u>	
Ga	ateway		10.130.65	.2				<u>set</u>	
Dn	nsServer							set	
								restart network	
Nt	pMode		1					set	
Nt	pServer		192.53.10	3.104				set	
La	inTelegramNu	Imber	2					set	
La	inTransferMoo	de	1					set	
La	inPort		11000					<u>set</u>	
Htt	tpPort		80					set	
AF	D Configurat	ion							
A	AfdMode	1					<u>set</u>		
Dor	wnload AFD o	dir config							
	load new AFE Browse) dir_config: No file selected.	send						

Figura 20 Interfaz web: Configuración de la red (modo de service).

La Figura 19 muestra la pestaña "Config Network" de un equipo con IP estática en la vista de usuario estándar. En las vistas de superuser y usuario de service del apartado Configuración de la red (Figura 20), la IP estática (eth0: 1 definido por el usuario), la máscara de red y la gateway se pueden adaptar a las condiciones de la red local. Para guardar la configuración en los archivos de configuración de red y utilizar la nueva configuración, debe reiniciarse la red. El reinicio se puede realizar haciendo clic en el botón "Restart network".

Antes de que active el modo AFD (ftp) debe instalar correctamente el archivo de configuración AFD. Para más información ver 8.8 Modo .

Figura 21 muestra el contenido de la pestaña "Config System", que permite acceder a partes del sistema:

Manual de instrucciones CHM 15k

Device Viewer NetCDF Files	Config System Co	nfig Network Config RS4	85 Process Warnings	?	Lufft
Parameter	current Value	new Value			
Location	Berlin			set	
Institution	NN			set	
WMOStationCode	0			set	
Comment				set	
Longitude	0			set	
Latitude	0			set	
Zenith	0			set	
Azimuth	0			set	
Altitude	0			set	
UseAltitude	0			set	
LoggingTime	15			set	
Unit	0			set	
Layer	3			set	
TimeZoneOffsetHours	0			set	
BlowerMode	0			set	
RangeResolution	3			set	
RangeStart	5			set	
RangeEnd	10000			set	
RangeHrDim	32			set	
UAPD	170000			set	
ApdControlMode	1			set	
TestMode	0			set	
Standby	0			set	
CloudDetectionMode	0			set	
BackscatterMax	4000000			set	

Figura 21 Interfaz web: Configuración del sistema, parte superior (modo de service).

La introducción de los datos de ubicación, institución, latitud y longitud geográficas es muy útil cuando está previsto analizar los datos y compararlos con los resultados de otros instrumentos, y cuando el Service de Lufft tiene que identificar algún problema.

Por motivos de seguridad no es incluyen algunos datos del modo de superuser. En la misma página más abajo se pueden cargar las actualizaciones del firmware en el equipo, entrando con derechos de superuser (Figura 22). Los nuevos archivos de firmware vienen comprimidos en forma de archivos zip de respaldo y se deben cargar en este formato. Las nuevas actualizaciones del firmware se publican en la página web de Lufft. El apartado 11.2 de este manual incluye una lista con todas las versiones habilitadas anteriormente.

UTC Time [Format: MMDDHHmmYYYY (i.E. 061013162010 for Jun 10 13:16:00 2010)]	set
Download current settings	
Determine Reference Values	
Change Superuser password	
Reset settings to factory defaults	
Format SD card	
Update firmware: You need a version for CPU 552, e.g. 'chm_0_734_552.zip'. Browse No file selected.	

Figura 22 Interfaz web: Configuración del sistema, parte inferior (modo de service).

La Figura 23 muestra la página "Config RS485". Por motivos de seguridad falta la función de carga de nuevos formatos de telegrama. Si desea instalar telegramas propios diríjase a Lufft.

vice	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?		<u> </u>
Parame	ter		current Valu	ie n	ew Value				
RS485N	lumber		16	[set	
Baud			3	[set	
BaudAfte	erError		3	[set	
Transfer	mode		1	[set	
Transfer	modeAfterEn	ror	1	[set	
gnorCha	ars		06	[set	
MaxCros	ssTalkChars		5	[set	
TimeOut	tRS485(s)		30	(set	

Figura 23 Interfaz web: Configuración RS485 (modo de service).

8.7.4 Mensajes de estado y de error (Process Warnings)

La parte superior de la pestaña "Process Warnings" de la Figura 24 es utilizada sobre todo por el Service de Lufft para identificar problemas y errores específicos.

La sección inferior muestra información sobre el modo de distribución de archivos ampliada (automatic file distribution, AFD). Cuando el modo AFD está activado se muestra el estado de los archivos transmitidos. Sirve para comprobar que la configuración es correcta, o bien para detectar los errores que han ocurrido durante la configuración con el archivo de configuración AFD. La sección de estado de AFD solo es visible cuando el modo AFD está activado.

Devi	ce Viewer	NetCDF Files	Config System	Cor	nfig Network	Config RS485	Process Wa	rnings ?	12 2 12	Eufft
	Process Warning	gs Detected	as Warning	Codo	Description	Occured (Er	or Marning)	Last Dotostad	ovt Daram	
	Delected as Erro	J Delected	as warning	coue	Description	Occureu (Ell	on/warning)	Last Detected	ext. Param	
	no errors detecte	a							<u>update</u>	
	AFD Status									
	Transferred Files				15					
	Transferred File S	Size			146	1780				
	Files in Queue				0					
	File Size in Queu	e			0					
	Number of Conne	ections			5					
	Time of last Conr	nection			Wed	Sep 12 13:30:01	2018			
	Time of last Retry	(Wed	Sep 12 12:10:25	2018			
	AFD Space Used	l (%)			23					
	Errors									
	Total Errors				0					
	Error Counter				0					
	Error History				000	-> Transfer succes -> Transfer succes	55 55			

Figura 24 Interfaz web: Advertencias de proceso y registro de errores. El estado de AFD solo es visible cuando el modo AFD está puesto en 1.

8.7.5 Time server

La sincronización automática con un servidor horario (NTP Server) solo se realiza cuando el parámetro *NtpMode* está establecido en 1 y se ha definido un servidor horario válido (*NtpServer*).

En el servidor horario aparece una lista de los archivos de configuración de ntpd.conf. El servidor preconfigurado es: 0.0.0.0.0.0 (sin servidor horario). El modo de servidor horario NTP está desactivado.

Ejemplo: ptbtime1ptb.de, dirección IP 192.53.103.108.

Se recomienda utilizar esta dirección NTP. Antes de poder utilizar la dirección del servidor debe establecerse una dirección de servidor DNS válida. Cuando el sistema detecta un servidor horario lo utiliza de forma inmediata.

Atención:

El usuario debe evitar al ajuste automático de la hora a través del comando de fecha y hora (RS485) cuando al mismo tiempo se está ejecutando el ntpd a través de TCP/IP.

8.8 Modo AFD

El modo AFD ("automatic file distribution", distribución de archivos ampliada) está implementado desde la versión 0.52 del firmware.

Se utiliza para enviar a un servidor ftp los datos de medición guardados en el formato NetCDF y requiere una conexión por la interfaz Ethernet.

El modo AFD se puede activar con derechos de superuser a través de la interfaz web (Figura 20). Para satisfacer los requisitos locales, el archivo de configuración "afdsettings" se debe descargar, configurar y volver a cargar.

Por defecto, el AFD está configurado para transmitir cada 15 minutos un archivo NetCDF de 5 minutos. El usuario puede aglomerar los archivos NetCDF en archivos de 24 horas.

El archivo de configuración "afdsettings.text" se muestra abajo. El nombre oficial del archivo es: "DIR_CONFIG". En la página web DWD AFD encontrará más información sobre los comandos descritos en este apartado. Los hashtags (#) se utilizan para comentar los comandos.

Archivo de configuración "afdsettings.txt":

[directory] /tmp/afd/netcdf/afd-src

[dir options] delete unknown files 0 delete queued files 6

[files]

[destination]

[recipient] ftp://user:password@host_ip/path/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600

exec -d bzip2 %s

Información importante para editar el archivo de configuración:

Es importante respetar el formato completo (líneas en blanco y sangrías) del archivo afdsettings. Las diferentes configuraciones del archivo de ejemplo descargado del ceilómetro deben modificarse con cuidado y paso a paso. # se utiliza para marcar un comentario

Ejemplo de un archivo "afdsetting.txt": Ftp server 192.168.1.51 Subdirectorio en el servidor (desde la raíz): /home/chm_data Nombre de usuario: afd Contraseña: eXample

[recipient] ftp://afd:eXample@192.168.1.51//home/chm_data/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600 exec -d bzip2 %s

Cada 15 minutos se transmiten los archivos comprimidos en formato bzip al directorio especificado /home/chm_data /hostname/year/month del servidor ftp. El hostname "%h" es el nombre de equipo, como CHM060001, año "%tY" y mes "%tm" los ajustes de fecha especificados por el equipo.

La barra inclinada doble // después de la dirección IP indica que la ruta empieza en el directorio de origen, la barra inclinada simple / indica que empieza en el directorio home del ftp.

Una ruta ftp en el directorio Windows puede tener la siguiente sintaxis:

ftp://afd:eXample@162.168.1.51/%h/%tY/%tm.

El archivo se guarda en el subdirectorio %h/%tY/%tm del directorio principal en el servidor ftp.

Inmediatamente después de crearlo, el comando "time * * * * * " envía el primer archivo NetCDF de 5 minutos.

8.9 Telegrama por Ethernet

Además de por la interfaz RS485, los telegramas de datos se pueden recibir a través de la interfaz Ethernet. Existen dos modos de envío: Los telegramas se pueden solicitar uno por uno (modo de polling), o bien se envían automáticamente desde el ceilómetro.

Para configurar el comportamiento de envío de telegramas existen los tres parámetros "LanPort", "LanTelegramNumber" y "LanTransferMode", que se pueden configurar a través de RS485 o en la pestaña "Config Network" de la interfaz web, ver Table 4.

Se pueden solicitar todos los telegramas de usuario descritos en el apartado 8.3. Igual que en el modo de transmisión RS485, el telegrama de datos está codificado con uuencode y se debe descodificar para que se pueda leer.

El ceilómetro (servidor) espera a que en el puerto "LanPort" entre una solicitud de conexión desde externo (del cliente). Después podrá enviar telegramas al cliente. Las solicitudes se pueden realizar a través de ncat o telnet. La solicitud de un cliente dirigida a un CHM con la IP 192.168.100.101 y un LanPort de 11000 podría tener la siguiente sintaxis:

ncat 192.168.100.101 11000 o telnet 192.168.100.101 11000

Desde los sistemas operativos Windows se pueden descargar e instalar archivos binarios del servidor <u>https://nmap.org/download.html</u>. Esta página web también ofrece códigos binarios y fuente para otros sistemas operativos.

Si entra una solicitud de conexión del cliente y el equipo está en **modo de polling** solo se enviará un único telegrama (en el formato indicado "LanTelegramNumber") y después el CHM finaliza la conexión. En el **modo de transmisión automática**, el CHM envía los telegramas continuamente (de acuerdo con el intervalo de registro) a todos los clientes conectados.

8.10 Herramientas de archivos NetCDF

Para el procesamiento, la modificación o la aglomeración de archivos NetCDF se dispone de varias herramientas. Especialmente en el modo AFD, el programa ncrca.exe es una potente herramienta para aglomerar archivos de 5 minutos creando archivos de 24 horas.

El mismo comando sirve para aglomerar como archivos diarios archivos NetCDF individuales de telegramas de datos en bruto.

ncrca forma parte del conjunto de herramientas nco y se puede descargar de la siguiente página web:

http://nco.sourceforge.net

Para usuarios de sistemas operativos Windows:

La aplicación directa del comando ncrca.exe en la línea de comandos de Windows está limitada por el uso de comodines y la longitud total de la línea de comandos. Recomendamos, p. ej., el uso de Git-bash para remediar este problema.

Ejemplo:

La siguiente línea de comandos permite aglomerar todos los archivos NetCDF que se encuentren en el directorio de archivos del equipo CHM123456 del 06 de abril de 2015. El archivo de salida del ejemplo es out.nc.

ncrca.exe -Y ncrcat -h data/20150406_Berlin_CHM123456*.nc out.nc

9 Evaluación de datos / Sky Condition Algorithm (SCA)

El ceilómetro CHM 15k es un equipo de teledetección con algoritmo embebido para determinar capas de partículas y gotas en la atmósfera. El algoritmo embebido se resume bajo la denominación Sky Condition Algorithm (SCA). Los ceilómetros determinan la base de las nubes y proporcionan información sobre la profundidad de penetración en las nubes. Si se detecta otra capa de nubes o aerosoles debajo de la nube inferior, la profundidad de penetración se puede interpretar como espesor de las nubes. Además se determina el grado de cobertura nubosa del cielo en forma de fracciones de octavos. Para las visibilidades inferiores a 2 km se calcula y se facilita la visibilidad vertical (VOR). El algoritmo de aerosoles basado en un algoritmo tipo wavelet reconoce diferentes capas de aerosoles y transmite las capas registradas dentro de la capa límite atmosférica. La niebla, la neblina y las precipitaciones se recogen y transmiten mediante el parámetro Sky Condition Index (SCI).

9.1 Teledetección por láser

Un láser pulsado de infrarrojo cercano explora el cielo en sentido vertical desde la parte superior del instrumento hasta una altura de 15 km. Los diferentes objetivos tales como las capas de aerosoles y las nubes devuelven un eco con una intensidad de retrodispersión y un debilitamiento de señal determinados. Con una longitud de onda del láser de 1064 nm, tanto la absorción molecular como la dispersión Rayleigh por las moléculas del aire son despreciables. La distancia de las partículas dispersantes al equipo se calcula a partir del tiempo de recorrido del láser.

9.2 Preparación de los datos de medición

La preparación previa de los datos de medición es imprescindible antes de iniciar los diferentes pasos del algoritmo SCA. Su objetivo principal es la armonización/normalización de los registros de datos obtenidos por diferentes sistemas CHM 15k para conseguir resultados similares, p. ej., para la base de las nubes, incluso cuando la sensibilidad de los instrumentos es diferente.

Cada una de las mediciones se normaliza determinando la sensibilidad de detección mediante un pulso de luz de referencia p_{calc} . Las diferencias entre los distintos equipos se compensan mediante un factor de escalada c_s , que se determina mediante una medición comparativa con un equipo de referencia. La Figura25 muestra los perfiles de dos equipos diferentes después de la normalización y calibración.

Figura25 Señal de retrodispersión P(r) para la unidad de medición de referencia (azul) y la unidad de medición probada (rojo). Para la normalización se realiza una medición horizontal con un objetivo fijo que se encuentra a una distancia de 9,4 km. A una distancia de 16 km se aprecia un pulso de prueba en la señal.

Para obtener la potencia de retrodispersión normalizada se utiliza la siguiente fórmula:

$$P(r) = \frac{P_{raw}(r) - b}{c_s \cdot O(r)} \cdot \frac{1}{p_{calc}}$$

Siendo P_{raw} la señal de retrodispersión no procesada, *b* la baseline y O(r) la función de solapamiento. *pcalc* y *cs* son la constante de normalización y el factor de calibración. La señal de retrodispersión normalizada P(r) se multiplica por *r*² y se guarda en la variable beta_raw del NetCDF.

Otro paso del procesamiento consiste en determinar las capas de aerosoles y la altura de las nubes. Para compensar la reducción de la relación señal/ruido en grandes alturas, la señal se promedia con un tiempo de promediación en función de la altura, tal y como se muestra en la Figura 26. La

promediación del tiempo varía desde los 15 segundos en alturas inferiores a 3 km, hasta los 300 segundos en alturas superiores a 6 km.

Figura 26 Ejemplo de promediación de diferentes intervalos de tiempo para determinar la altura de las nubes.

9.3 Base de las nubes y profundidad de penetración

Una vez finalizado con éxito el preprocesamiento, el perfil de retrodispersión se utiliza para ecos de nubes, lluvia, niebla y capas de aerosoles, y distinguir estos fenómenos.

La Figura 27 muestra una imagen de intensidad de un día, en la que se han representado en negro todas las señales de retrodispersión significativas para contrastarlas con el fondo.

El algoritmo SCA identifica ahora las precipitaciones y las estructuras de los aerosoles, y calcula a continuación las alturas de las nubes y la profundidad de penetración en las nubes.

Figura 27 Algoritmo de detección de nubes.

9.4 Profundidad de penetración en las nubes

La profundidad de penetración en las nubes se justifica detectando la base de las nubes y después de la altura superior de las nubes empleando el nivel de intensidad de la señal que se ha determinado para la base de las nubes. La la profundidad de penetración en las nubes se obtiene mediante la sustracción de estos valores.

Para calcular la incertidumbre de la profundidad de penetración se utiliza un método de umbrales y gradientes a fin de verificar los valores identificados. La Figura 28 muestra el proceso de evaluación para los parámetros de las nubes.

Debe tenerse en cuenta que la altura superior de la nube generalmente no es el punto más alto de la nube. La profundidad de penetración y el espesor de la capa de nubes solo son similares cuando el ceilómetro detecta otra capa de nubes por encima. En la mayoría de los casos la luz láser se dispersa en la nube y pierde mucha intensidad, haciendo imposible identificar el límite superior de la nube.

Figura 28 Diagrama que representa el proceso de evaluación de diferentes parámetros de nubes.

9.5 Parámetros de evaluación de datos

La rutina de evaluación de datos es controlada por un conjunto de parámetros. Los datos independientes del sistema se guardan en la unidad de medición (LOM). Los datos accesibles para los usuarios se encuentran en Table 4 y Tabla 5.

Cuando el instrumento está inclinado y el ángulo zenit establecido correctamente, el ángulo se utiliza para corregir la distancia a las nubes y otras distancias.

9.6 Determinación del rango de detección máximo (MXD)

El rango de detección máximo es la distancia máxima en la que se pueden medir señales significativas. Depende de la relación señal/ruido (S/N) en función de la distancia. En alturas más allá de la capa límite las señales significativas solo son generadas por nubes o capas de aerosoles espesas. El rango de detección máximo se calcula con independencia del algoritmo de detección de nubes y se puede utilizar para verificar el resultado en aquellos casos en los que el ceilómetro no detecta ni capa de nubes ni visibilidad vertical. El MXD se puede utilizar para la verificación cuando el resultado "cielo despejado" es correcto.

9.7 Visibilidad vertical óptica (VOR)

El método para determinar la visibilidad vertical (VOR: Vertikal Optical Range) se describe en la norma ISO 28902-1:2012. A continuación se describe paso a paso

como los equipos Lufft utilizan la VOR:

Primero se determinan todos los intervalos de la señal de retrodispersión (ver 9.2 Preparación de los datos de medición) que tengan una relación señal/ruido >5. Para estos intervalos relevantes se utiliza el método de inversión de Klett para determinar la extinción $\alpha(r)$.

La visibilidad vertical óptica es aquella en la que la integral de las extinciones es igual a 3.

$$\int_0^{VOR} a(r)dr = 3$$

El rango para calcular la VOR está limitada a 3 km. La transmisión de los datos depende del telegrama de datos seleccionado. En los telegramas estándar 1 - 3 siempre se transmite la visibilidad vertical, mientras que en los telegramas de usuario 8 y 9, que corresponden al telegrama de datos CT25k, se transmite la VOR, o bien la base de las nubes.

≪Lufft

9.8 Precipitación y niebla

La niebla y las diferentes tipos de precipitación se reconocen mediante la dispersión múltiple. Típicamente, solo se consideran fuentes de señal los procesos de dispersión simple. Por eso es que una elevada turbidez atmosférica y una gran densidad de partículas generan una señal más intensa de lo habitual cerca del equipo. Para valorar la turbidez y la precipitación se aplica una integral en determinados rangos de la señal.

9.9 Altura de la capa de mezcla

Se trata de aerosoles que se detectan en la capa de aire inferior cerca del suelo. Su límite superior se puede definir como capa límite planetaria (onshore) y capa límite marítima (offshore). La capa de aerosoles inferior que se puede identificar dentro de la capa límite se puede interpretar como altura de la capa de mezcla (MXL). Igual que todas las estructuras de aerosoles dentro de la capa límite, la MXL depende de las condiciones meteorológicas y, en días soleados, de la hora del día.

Las alturas de las capas de aerosoles se pueden identificar para encontrar signaturas de gradientes en la señal de retrodispersión. La calidad de las capas de aerosoles detectadas depende en gran medida de las condiciones locales y la hora. La Tabla 18 muestra un índice que describe la calidad de las capas de aerosoles identificadas en relación a una gran exactitud y baja incertidumbre.

Índice Q	Descripción
/ (telegram) -1 (NetCDF)	No existen suficientes datos en bruto para realizar el cálculo
- (telegram) -2 /NetCDF)	Error de hardware o sistema no preparado para la medición
(telegram) -3 (NetCDF)	El algoritmo no puede determinar valores
0	No se ha detectado ninguna capa de partículas (el índice no se calculaba en las versiones de firmware más antiguas)
1	Capa de partículas detectada con gran exactitud (< 50 m)
9	Capa de partículas detectada, pero con gran incertidumbre y baja exactitud

Tabla 18. Índice Q. Descripción de la altura de la capa de aerosoles.

9.10 Grado de cobertura (BCC/TCC)

El grado de cobertura nubosa se determina mediante cálculo estadístico a partir del comportamiento en el tiempo de las bases de nubes inferiores. Se distingue entre la cobertura de la capa de nubes inferior (BCC: Base Cloud Cover) y la suma de todas las capas de nubes (TCC: Total Cloud Cover). Los valores de estos parámetros también se guardan en los archivos NetCDF.

El intervalo temporal observado depende de la altura (Figura 29). Para cada intervalo de altura se determina la frecuencia de aparición de las distintas capas de nubes. El histograma se alisa mediante una función de ponderación por altura. Dentro de la distribución de frecuencias ponderada se separan los picos. Todas las bases de nubes dentro de un pico se aglomeran en una capa de nubes.

Los tramos que contienen bases de nubes se computan con el número total de secciones cónicas. Los valores de cobertura nubosa resultantes de esta comparación de expresan como porcentaje. El grado de cobertura final se indica en octavos. La Tabla 19 muestra el código WMO 2700 para el índice de cobertura nubosa.

61

Octavos	Descripción
- (telegram) -2 (NetCDF)	Error de hardware o sistema no preparado para la medición
/ (telegram) -1 (NetCDF) -3 (NetCDF)	Las bases de las nubes no se han podido determinar por la niebla y otros motivos no meteorológicos, o bien no ha tenido lugar la observación
0	Cielo despejado
1	1 octavo: 1/10 – 2/10
2	2 octavos: 2/10 – 3/10
3	3 octavos: 4/10
4	4 octavos: 5/10
5	5 octavos: 6/10
6	6 octavos: 7/10 – 8/10
7	7 octavos o más pero <10/10
8	8 octavos: 10/10
9	El cielo está cubierto debido a la niebla u otros fenómenos meteorológicos.

Tabla 19 Grado de cobertura, código WMO 2700 y definiciones en décimos.

∐Lufft

Figura 29 Algoritmo de cobertura.

Aviso: El intervalo temporal seleccionado para el cálculo de la cobertura nubosa depende del rango en que se utiliza una función de tronco de cono para el cálculo.

9.11 Sky Condition Index (SCI)

El Sky Condition Index se escribe en el telegrama de datos ampliado y en los archivos NetCDF para comprender mejor determinados fenómenos. En los sistemas CHM más antiguos esta variable figuraba como índice de precipitación.

La Tabla 20 muestra la definición del índice.

Valor	Descripción
 -2 (NetCDF)	Error de hardware o sistema no preparado para la medición (-2 in NetCDF)
00	No se ha detectado ni niebla ni precipitación
01	Lluvia
02	Niebla
03	Nieve o Iluvia gélida
04	Transmisión del cristal reducida, gotas en los cristales
// (telegram) -1 (NetCDF) -3 (NetCDF)	La observación no se realiza, en el NetCDF se utilizan los valores numéricos -1, -3 en lugar de // en el telegrama

Tabla 20 Sky Condition Index (SCI).

10 Instrucciones de limpieza, mantenimiento y service

	Después de conectar la alimentación eléctrica, el CHM 15k emite radiación láser invisible de la clase 1M por la parte superior del equipo. La observación de la radiación de la clase 1M con instrumentos ópticos puede provocar graves lesiones oculares.				
	En ningún caso se debe observar el haz láser directamente con instrumentos ópticos, (prismáticos).				
	➡ Evitar mirar directamente al haz láser.				

En el modo normal se puede verificar el funcionamiento del equipo con dos LED (ver Figura 30). El LED rojo en la esquina inferior derecha de las ventanillas indica una avería del equipo. El LED se ilumina cuando existe un error de hardware o software detectado por el sistema de control principal. Para más información sobre el error transmitido puede consultar el código de estado de la interfaz web (ver Figura 16) o el código de estado por RS485 (ver 8.5 Código de estados).

El LED verde en la esquina inferior izquierda de las ventanillas indica que la alimentación eléctrica está conectada. El LED debe estar iluminado cuando el equipo está conectado. Si no es el caso significa que el cable no está conectado, el interruptor de potencia está desconectado o que los fusibles están defectuosos.

10.1 Limpieza

Los cristales de protección del armario interior del CHM 15k están certificados con una energía de impacto de 1 joule (IEC/EN 61010-1: IK06).

		Si el sensor se utiliza con un cristal de protección roto, se puede producir una descarga eléctrica que pueden provocar lesiones graves e incluso mortales. Los fragmentos del cristal pueden provocar lesiones de corte.			
		Cuando detecta que hay una ventanilla dañada, desconecte inmediatamente el ceilómetro mediante el seccionador de red y asegúrelo contra una posible reconexión.			
		➡ Llevar guantes de protección cuando manipula los cristales rotos.			
		➡ Envíe el sensor para su reparación a G. Lufft.			
		AVISO			
Si el	mante	nimiento realizado es incorrecto o insuficiente, el equipo puede resultar dañado.			
⇒∣	EI CHM	I 15k debe limpiarse regularmente a fin de asegurar la calidad de medición.			
t} ।	EI CHN service	M 15k requiere un mantenimiento regular. Solo puede ser realizado por el personal de e de G. Lufft GmbH, o bien por técnicos con una formación específica.			
₽	Encont	rará las instrucciones de mantenimiento detalladas en el manual de service.			

Intervalo	Limpieza	Observaciones/medios auxiliares		
trimestral ¹	Limpieza de los cristales (Figura 30): sobre todo con mucha agua y un poco de detergente suave. Repartir	Detergente lavavajillas, agua, manos		
	una pequeña cantidad de detergente con las manos en la ventanilla y aclararla con agua. Finalmente, aclarar otra vez con agua desmineralizada.	No utilizar paños de microfibra para limpiar los cristales.		
en caso necesario	Eliminar los depósitos en el espacio debajo de la cubierta del armario	Productos de limpieza neutros, paños de microfibra		
en caso necesario	Eliminar la vegetación de las rejillas de entrada de los ventiladores (parte trasera)	Mantener despejada la zona de aspiración de los ventiladores, ver Figura 31		
en caso necesario	Eliminar la nieve ²	Mantener despejada la zona de aspiración de los ventiladores, ver Figura 31		

Tabla 21 Intervalos/tareas de limpieza

 1 con una carga de polvo en el aire de 25 – 35 µg/m³

² cuando la alcanza la entrada de aire de los ventiladores.

Figura 30 Ventanillas para limpiar.

En la esquina inferior derecha del cristal de recepción se encuentra el "LED de error" rojo. 1: Salida del láser en el lado izquierdo con piloto verde en la esquina inferior izquierda

2: Salida del receptor en el lado derecho con LED rojo.

Figura 31 Boca de ventiladores.

Deben eliminarse la nieve y otros depósitos en la zona debajo de los ventiladores.

10.2 Intervalos de mantenimiento y tareas

La Tabla 22 contiene las tareas de mantenimiento preventivo recomendadas y el intervalo para los controles regulares. Para realizar la tarea de mantenimiento debe abrirse la puerta del armario interior y solo puede ser abierta por el personal de service de G. Lufft GmbH, o bien por personal autorizado y formado del cliente.

Encontrará más información complementaria a la de este manual (mantenimiento, sustitución de piezas, detalles del equipo) en el manual de service. El manual de mantenimiento está disponible para los empleados de G. Lufft GmbH y el personal con una formación específica acreditada mediante un certificado de capacidad por escrito (certificado válido) para realizar los trabajos de mantenimiento y conservación correspondientes.

Por cualquier consulta o cuando no ha podido solucionar un problema con uno de los procedimientos descritos en este manual de instrucciones, le recomendamos que se dirija el técnico de service local o directamente a G. Lufft GmbH.

Intervalo	Tareas de mantenimiento preventivo	Comentario
comprobaciones regulares	Comprobación de la bolsa deshumidificadora CONTAINER DRI II por daños. Sustituir en su caso	sólo a cargo de personal de service
mínimo una vez al año	Cambio de la bolsa deshumidificadora CONTAINER DRI II	sólo a cargo de personal de service
aprox. cada 5 años	como medida preventiva: cambio de la junta de goma de la puerta interior (en caso de fatiga del material)	sólo a cargo de personal de service
aprox. cada 5 años	como medida preventiva: Sustitución del pararrayos (también después de una caída de rayo)	sólo a cargo de personal de service
aprox. cada 8 años	como medida preventiva: Sustitución de la placa base electrónica y del módulo láser	sólo a cargo de personal de service
comprobaciones regulares	Comprobación de la bolsa deshumidificadora CONTAINER DRI II por daños. Sustituir en su caso	sólo a cargo de personal de service

Tabla 22 Intervalos y tareas de mantenimiento preventivo.

11 Anexo

11.1 Versión de hardware del CHM 15k

Revisión	Fecha de cambio	Cambios	Comentario
REV 01	01/05/2014	Estado de hardware Lufft 1	Primera versión del hardware Lufft
REV 02	01/09/2014	Actualización placa base CHM, nueva: 41.61225	antigua 61125 nueva: 61225
REV 03	01/06/2015	 Cable DSL nuevo Cable RS485 nuevo 2x2x0.34 Ampliación del controlador láser Módem R4 VDSL 	 1) TWINAX- Lapp#:2170050 2) Unitronic (esquema de color DIN) 3) Versión R1 4) MEG250AE
REV 04	01/07/2015	Nueva placa de CPU por descatalogización de componentes	8350.MCP (antigua 551, nueva 552)
REV 05	29/07/2015	Placa base del CHM nueva por descatalogización de componentes	8350.MCU
REV 06	01/06/2019	Mejoras relevantes para la CEM y la seguridad	

Tabla 23 Versiones de hardware (versión de hardware 0 significa que el valor no está establecido).

11.2 Versión de software del CHM 15k

Este manual se refiere a la versión de firmware 1.020 de septiembre de 2019 para el CHM 15k.

Versión OS / FPGA	Descripción	Publicación
OS 12.12.1 FPGA 2.13	CPU 550 : manejo de bloques malos implementado Reset sensor de temperatura ADC	dic 2012
OS 15.06.1 FPGA 2.13	Versión original para versión 552 de CPU	jun 2015
OS: 15.12.1 FPGA 2.13	Controlador Ethernet: solución de un fallo de comunicación directa ordenador portátil - CHM 15k Nombre del host correctamente establecido (nombre de dispositivo). El nombre del host es usado por AFD "%h" y transferido a un servidor DHCP Se pueden introducir la IP y el nombre del host en la interfaz web, p. ej., CHM160122.lufft.de	dic 2015
OS 16.05.1 FPGA 2.13	Actualización de web publicada de v. 15.06.1 (mismo contenido que 15.12.1)	may 2016
OS 17.05.01	Problema de arranque con algunas tarjetas SD solucionado	may 2017

FPGA 2.13		
OS 18/10/2001 FPGA 2.13	Solo relevante para producción. (uso de la EEPROM en función del dispositivo (p. ej., tiempo de vida del láser para el CHM8k))	oct 2018

Tabla 24 Sistema operativo / versiones FPGA

Versión de firmware	Descripción	Publicación
0723	 Parche NetCDF para evitar problemas en proceso de control compatibilidad con nueva placa de CPU (2015) Última versión de Jenoptik 	mar 2014
0730	 Actualización del algoritmo de nubes durante las precipitaciones Implementación de telegrama por Ethernet, ahora usa puerto 11000 Detección de capas de aerosoles menos sensible en los rangos bajos para evitar artefactos Parámetro de rango implementado en la interfaz web y la interfaz de comandos (RAR, RAS, RAE,RHD) La detección de nubes usa una nueva resolución de rango flexible para mejorar la precisión del procesamiento posterior Nombre de Range2DIM cambiado a RangeHRDim y número máx. de puntos de datos establecido en 600 Se han añadido los números de serie de varios componentes en la EEPROM (opticconfig) Nuevo número de serie de la placa base (edición 2015) 	dic 2014
0732	 Pequeño ajuste del algoritmo de nubes (límite inferior de falsa alarma debajo de 100 m; cambios de suavizado de señal) La primera promediación empieza en 3 km en lugar de en 2.2 km, mejor correspondencia para cumplir con los requisitos de mantenimiento Se conserva el DeviceName al restablecer la configuración de fábrica. Opción de restablecer configuración de fábrica eliminada de la interfaz web (se rediseñará y reintegrará en el futuro) 	may 2015
0733	 Revisión de la placa base y de la placa de CPU mostrada en la interfaz web Bit de código de estado 12 (temperatura del controlador láser) combinado con el bit 13 (bloqueo de láser) como nuevo bit 13! Prueba de compatibilidad del firmware actualizado con la placa de CPU (error en bit de código de estado 12) Reducción de la temperatura válida de la unidad óptica del láser de 62 °C a 55 °C Aumento de la tolerancia para la advertencia de temperatura de APD (bit de código de estado 26), ahora es 24°C < x < 28°C 	jul 2015

Versión de firmware	Descripción	Publicación
0735	 Rango de altitud configurable aumentado a [-999m, 9999m], ahora se aceptan valores negativos 	sep 2015
	 Cambio del rango configurable de RangeStart y RangeEnd (RangeStart de [5,3000] a [5,1000]; RangeEnd de [8000,15400] a [5500,15400]) 	
	 Visualización del tiempo de vida corregido del láser (con LaserInstallTime) en la interfaz web y en chmsettings.txt (lo mismo que en el archivo NetCDF) 	
	4. Nuevos telegramas predefinidos: #4 (corresponde a #2) y #5 (corresponde a #1), con la diferencia de que se muestra la actividad de los ventiladores y la calefacción al final del telegrama y la altitud no tiene signo positivo a fin de permitir un rango de altitud más amplio	
0743	1. Nueva mejora del algoritmo de la altura de la capa de aerosoles (ALH) (para valores de ALH con SNR bajo)	jul 2016
	 En la pestaña Viewer de la interfaz web se muestra una tabla con las mediciones en curso (cbh, cpd, alh, tcc) (visualización limitada a 5 capas). 	
	 El nombre y la fecha de creación del archivo overlap se muestra en la interfaz web y se guarda en el archivo NetCDF 	
	 Los mensajes del telegrama de Vaisala CT25k n.º 1 y 6 se incluyen en los telegramas de usuario 8 y 9 	
	5. Adaptación del funcionamiento con tarjeta SD, CHM funciona sin tener presenta la tarjeta SD	
	 Nueva configuración de DhcpMode y DnsServer disponible, el modo DHCP se puede desactivar 	
	7. Se puede configurar el puerto HTTP	
	 Se puede configurar el puerto LAN y el modo de telegrama para la solicitud de telegramas por LAN . 	
0747	Observe: Se requiere versión 1.7 de ChmDataViewer	may 2017
	 Se muestra el CloudDetectionMode actual en la última posición del atributo NetCDF 'software_version' (p. ej. software_version = "17.05.1 2.13 0.747 1" para modo 1) 	
	 Se introduce la variante de detección de nubes "nubes bajas más altas", se puede usar con la nueva configuración del CloudDetectionMode = 1 (RS485 corto: CDM). Reinicio requerido después de cambiar el valor de CloudDetectionMode. 	
	3. Corrección para manejar franjas horarias después de cambiar la hora	
	 No mostrar ALH encima de nubes y subimpulsos ni durante las precipitaciones 	
	5. Ubicación con caracteres especiales	
	6. El telegrama n.º 2 se puede usar con hasta 9 capas	
	7. Manual: versión R09 integrada	

Versión de firmware	Descripción	Publicación	
0754	 Error de registro "temperatura de APD fuera de rango" (bit 26) solo se usa si PeltierMode es 1 	may 2018	
	 Tiempo de vida de los valores errores de lectura de temperatura APD reducida 		
	 Contraseña de service cambiada. (contraseña de superuser no cambiada). 		
	 Sincronización del sistema de archivo interno después de operaciones de escritura importantes. 		
	 El ventilador no se activa cuando la temperatura exterior no es válida. La ventilación relacionada con el calor solo se realiza si la temperatura interior es válida. 		
	 La temperatura no válida del modulo se refleja como error en el bit de estado 10. 		
	 Los AlhFilters se desactivan en modo de prueba. (relevante para la simulación CH) 		
	 Corrección: El parámetro de ubicación se puede establecer en el valor estándar (NN) 		
1000	Firmware de CHM8k y CHm15k combinados en base a las versiones 0.753 y 0.754	sep 2018	
	 Se ha introducido la dirección universal 99 de RS485, que siempre funciona independientemente del RS485Number establecido. 		
	 Se ha introducido el código de estado de escalada que se enviará en los telegramas 1 y 5. 		
	 Envío de la información de estado después de reiniciar el dispositivo (en función del motivo el reinicio) en telegramas, web y NetCDF. 		
	4. Se han introducido siete memorias de comentarios adicionales para disposición del cliente (cada una de 32 bytes). El comentario y el comentario1-7 se transmiten al final del telegrama 4. El telegrama 4 tiene ahora una longitud variable. Los comentarios solo ocupan el espacio que corresponde a su longitud. El comentario1-7 (CM1-CM7) se puede configurar a través de RS485.		
	5. Determina la visibilidad solo con datos del intervalo de registro actual.		
	 Tiempo de inicio de promediación para el algoritmo de detección de nubes por encima de 3050 m. 		
	 Se ha reparado el tipo de mime para descargar diferentes archivos de configuración (chm*, afd*, telegram). 		
	 Parche en detección de nubes (para versión 0.727): Prueba de dimensiones 		
1010	1. Mejora de la gestión del error de lectura de la temperatura de APD	nov 2018	
	2. Compensa el rebose de LaserLifeTime del módulo láser en el firmware		
Versión de firmware	De	escripción	Publicación
---------------------------	----	---	-------------
1020	1.	Introducción de la configuración LanTransferMode (LTM) (0polling, 1auto), envío automático de telegramas por LAN a diferentes clientes disponibles en modo 1.	sep 2019
	2.	Introducción de la configuración LanTelegramNumber (LTN) (antes se llamaba LanTelegramMode)	
	3.	Introducción del control de SystemStatusMode (SSM) ((0 = normal, 1 = códigos de estado escalables en telegramas) (los valores estándar son: 0 para CHM15k, 1 para CHM8k)	
	4.	Escribir información adicional (dirección MAC, número de serie de la CPU, información de overlap, versión de placa base y de CPU) en chmsettings.txt durante la descarga	
	5.	Mejora de la memoria interna de telegramas para evitar retrasos en la salida de los telegramas	
	6.	Error "temperatura de tubo superior a 55C" no se envía con valores negativos	
	7.	El manual de service ya no está disponible para la descarga en CHM para mantener pequeña la actualización de firmware	

Tabla25 Versiones de firmware.

12 Índice de figuras

Figura1 Distintivos de seguridad	7
Figura 2 Esquema funcional. Los números entre paréntesis se corresponden con los	12
Figura 3 Esquema secuencial del ciclo de medición estándar	13
Figura & Plantilla nara taladrar	15
Figura 5 CHM 15k embalado y en nosición de transporte	16
Figura 6 CHM 15k con embalaie de poliestirol o papel alveolar	16
Figura 7 Posiciones de elevación y protección de agarre (perfil de cantonera)	17
Figura 8 Transporte con carretilla	17
Figura 9 Elementos de fijación	18
Figura 10 Esquema de la instalación eléctrica	19
Figura 11 Instalación eléctrica del CHM 15k	20
Figura 12 Terminal de puesta a tierra en el zócalo del equipo	21
Figura 13 Conexión RS485 a un convertidor de señal	21
Figura 14 Conexión DSL	21
Figura 15 Vista del navegador Firefox con comunicación con el CHM 15k (aguí: de dirección	
IP fija).	24
Figura 16 Interfaz web	49
Figura 17 Interfaz web: Archivos NetCDF (superuser)	50
Figura 18 Interfaz web: Viewer	51
Figura 19 Interfaz web: Configuración de la red (modo estándar de solo lectura) de un equipo con una IP estática (eth0:1 custom)	51
Figura 20 Interfaz web: Configuración de la red (modo de service)	52
Figura 21 Interfaz web: Configuración del sistema, parte superior (modo de service)	53
Figura 22 Interfaz web: Configuración del sistema, parte inferior (modo de service)	54
Figura 23 Interfaz web: Configuración RS485 (modo de service).	54
Figura 24 Interfaz web: Advertencias de proceso y registro de errores. El estado de AFD solo es visible cuando el modo AFD está puesto en 1	55
Figura25 Señal de retrodispersión P(r) para la unidad de medición de referencia (azul) y la unidad de medición probada (rojo). Para la normalización se realiza una medición horizontal con un objetivo fijo que se encuentra a una distancia de 9,4 km. A una distancia de 16 km se aprecia un pulso de prueba en la	50
Senal.	58
altura de las nubes	59
Figura 27 Algoritmo de detección de nubes	59
Figura 28 Diagrama que representa el proceso de evaluación de diferentes parámetros de nubes.	60
Figura 29 Algoritmo de cobertura	63
Figura 30 Ventanillas para limpiar	66
Figura 31 Boca de ventiladores.	67

13 Índice de tablas

Tabla 1 Variantes del equipo. 8
Tabla 2 Ficha técnica10
Tabla 3 Comandos para la prueba funcional23
Table 4 Lista de los parámetros de equipo configurables;
Tabla 5 Lista de los parámetros de solo lectura disponibles a través de RS485;30
Tabla 6 Correspondencia entre el número de tasa de baudios y la tasa de baudios. 33
Tabla 7 Resumen de los diferentes modos de transferencia. 34
Tabla 8 Formato del telegrama estándar; * = cualquier caracter
Tabla 9 Formato del telegrama de datos ampliado (ver también Tabla 10); * = cualquier caracter
Tabla 10 Denominaciones en el telegrama de datos ampliado
Tabla 11 Tasa de baudios. Limitaciones del intervalo de registro40
Tabla 12 Formato del telegrama de datos en bruto; * = cualquier caracter40
Tabla 13 Dimensiones en el archivo NetCDF. 42
Tabla 14 Atributos globales en el NetCDF; *configuración definida por el usuario43
Tabla 15 Variables en el archivo NetCDF45
Tabla 16 Códigos de estado/bits de estado46
Tabla 17 Códigos de estado escalables (HW: hardware, SW: software, FW: firmware);*delete: el error se muestra hasta que se haya eliminado la causa del error49
Tabla 18. Índice Q. Descripción de la altura de la capa de aerosoles. 61
Tabla 19 Grado de cobertura, código WMO 2700 y definiciones en décimos. 62
Tabla 20 Sky Condition Index (SCI). 64
Tabla 21 Intervalos/tareas de limpieza 66
Tabla 22 Intervalos y tareas de mantenimiento preventivo. 68
Tabla 23 Versiones de hardware (versión de hardware 0 significa que el valor no estáestablecido).69
Tabla 24 Sistema operativo / versiones FPGA70
Tabla25 Versiones de firmware73

a passion for precision · passion pour la précision · pasión por la precisión · passione per la precisione · a p

ZLufft