Manuale di istruzioni Nefoipsometro Lufft CHM 15k

Sommario

1	Info	ormazioni generali	4
	1.1	Simboli utilizzati	5
2	Sicu	urezza	5
	2.1	Standard e direttive	5
	2.2	Indicazioni di sicurezza per il sistema laser	5
	2.3	Requisiti per il personale	5
	2.4	Indicazioni di sicurezza per trasporto, installazione, messa in funzione e pulizia	5
	2.5	Descrizione degli avvisi	6
	2.5.1	Descrizione dei simboli di pericolo	6
	2.5.2	Significato delle indicazioni di pericolo	6
	2.6	Indicazioni di sicurezza sul nefoipsometro CHM 15k	7
	2.7	Utilizzo conforme	7
3	Dat	i tecnici	8
	3.1	Informazioni per l'ordine	8
	3.2	Dati tecnici	8
4	Des	crizione tecnica	11
	4.1	Struttura del nefoipsometro CHM 15k	11
	4.2	Unità funzionali dell'involucro interno	12
	4.2.1	Diagramma funzionale	12
	4.2.2	Controllo funzionale e stato dell'apparecchio	13
5	Tras	sporto e fornitura	14
6	Inst	tallazione	15
	6.1	Installazione del nefoipsometro CHM 15k	15
	6.1.1	Lavori preparatori	15
	6.1.2	Installazione sulla base	16
	6.2	Allacciamento elettrico	18
7	Mes	ssa in funzione e disattivazione	22
	7.1	Messa in funzione con la connessione RS485	22
	7.2	Messa in funzione con la connessione LAN	23
	7.3	Disattivazione	24
	7.4	Smaltimento	25
8	Con	nunicazione su RS485 ed Ethernet	26
	8.1	Elenco dei parametri configurabili	26
	8.2	Configurazione dell'apparecchio con RS485	31
	8.2.1	Lettura di un parametro	31
	8.2.2	Definizione di un parametro	32
	8.2.3	Modifica del baudrate	32
	8.2.4	Riavvio del sistema Linux incorporato / Impostazioni di fabbrica	33
	8.2.5	Modifica delle impostazioni temporali	33
	8.3	Query di dati con RS485	34
	8.3.1	Polling	34
	8.3.2	Modalità di invio automatica	34
	8.3.3	Telegramma di dati standard	35
	8.3.4	Telegramma di dati esteso	36
	8.3.5	Telegramma di dati grezzi	39
	8.3.6	Ulteriori telegrammi di dati	41

2

Informazioni generali

	8.4	Struttura del formato NetCDF	41
	8.4.1	Informazioni generali	41
	8.4.2	Principi di base	41
	8.4.3	Nomi di file	42
	8.4.4	Struttura del formato	42
	8.5	Codice di statos	45
	8.5.1	Codici di stato aggiornati	46
	8.6	Aggiornamento del firmware	49
	8.7	Comunicazione via interfaccia Web Ethernet	49
	8.7.1	Panoramica dell'apparecchio e diritti di accesso (scheda Device (Dispositivo))	49
	8.7.2	Accesso ai dati di misurazione (schede NetCDF Files (File NetCDF) e Viewer (Visualizza 50	tore))
	8.7.3	Configurazione del nefoipsometro CHM 15k (schede Config)	51
	8.7.4	Messaggi di stato e di errore (scheda Process Warnings (Avvisi di processo))	54
	8.7.5	Time server	55
	8.8	MODALITÀ AFD Modus	55
	8.9	Telegramma via Ethernet	57
	8.10	Strumenti dei file NetCDF	57
9	Valı	utazione dei dati / Sky Condition Algorithm (SCA)	58
	9.1	Telerilevamento laser	58
	9.2	Preparazione dei dati di misurazione	58
	9.3	Base della nuvola e profondità di penetrazione	59
	9.4	Profondità di penetrazione nella nuvola	59
	9.5	Parametri per la valutazione dei dati	60
	9.6	Definizione della distanza di rilevamento massima (MXD)	60
	9.7	Visibilità ottica verticale (VOR)	60
	9.8	Precipitazioni e nebbia	61
	9.9	Altezza dello strato misto	61
	9.10	Grado di copertura (BCC / TCC)	61
	9.11	Sky Condition Index (SCI)	64
10) Puli	zia, manutenzione e istruzioni per l'assistenza	65
	10.1	Pulizia	65
	10.2	Intervalli e interventi di manutenzione	67
11	Alle	gato	69
	11.1	Versione hardware del nefoipsometro CHM 15k	69
	11.2	Versione software del nefoipsometro CHM 15k	69
12	2 Indi	ce delle figure	74
13	3 Indi	ce delle tabelle	75

1 Informazioni generali

Questo manuale di istruzioni è parte integrante dell'apparecchio. Deve essere conservato sempre nelle vicinanze dell'apparecchio, per poterlo consultare velocemente ogni volta che sia necessario.

Questo manuale di istruzioni deve essere letto, compreso e rispettato in ogni punto da tutte le persone responsabili dell'apparecchio e che eseguono attività su di esso. Questo si applica in particolare al capitolo "Sicurezza".

Data redazione: Luglio 2019

Numero documento: 8350.MEP

Queste istruzioni per l'uso sono valide per le seguenti varianti dell'apparecchio: CHM 15k con numeri d'ordine

8350.00	8350.10
8350.01	8350.B050
8350.01-BW	
8350.03	

Produttore

G. Lufft Mess- und Regeltechnik GmbH Gutenbergstraße 20 70736 Fellbach, Germania Telefono +49 711 518 22 – 831 Fax +49 711 518 22 – 41 E-mail service@lufft.de

Data	Edizione	Spiegazioni
Luglio 2015	R06	Rielaborazione di tutti i capitoli
Luglio 2016	R07	Rimozione di piccoli errori
Novembre 2016	R09	Firmware 0.743, rielaborazione di tutti i capitoli
Maggio 2017	R10	Adeguamenti della sicurezza del laser
Luglio 2019	R13	Rielaborazione generale, in particolare delle indicazioni di sicurezza

Copyright

© 2019

Il presente manuale è protetto dal diritto d'autore. Non è consentito riprodurre alcuna parte di questo manuale in qualsivoglia forma (fotografia, fotocopia, microfilm o altri metodi) né rielaborarlo, duplicarlo o distribuirlo con sistemi elettronici senza autorizzazione scritta di G. Lufft GmbH. Qualsiasi violazione verrà perseguita.

Il manuale è stato redatto con la dovuta attenzione. Non si assumono responsabilità per danni causati da una mancata osservanza delle informazioni contenute nel manuale.

1.1 Simboli utilizzati

⊐>

Osservazioni per un utilizzo senza problemi dell'apparecchio.

Azione richiesta

2 Sicurezza

2.1 Standard e direttive

L'apparecchio è stato realizzato secondo le regole della buona tecnica per la salvaguardia della sicurezza e viene prodotto in serie senza modifiche. Le regole applicate sono elencate nella Dichiarazione di conformità attualmente valida. È possibile scaricare le dichiarazioni di conformità dalla nostra homepage:

https://www.lufft.com/products/cloud-height-snow-depth-sensors-288/ceilometer-chm-15k-nimbus-2300/

2.2 Indicazioni di sicurezza per il sistema laser

Il nefoipsometro CHM 15k è un prodotto laser di classe 1M prodotto secondo IEC 60825-1:2014-06. È conforme a 21 CFR 1040.10 eccetto per scostamenti conformi alla Notifica Laser n. 50 del 24 giugno 2007. Il nefoipsometro CHM 15k emette un raggio laser invisibile (1064 nm) con una piccola divergenza (<0,5 mrad) e un diametro del fascio di 90 mm. Sul lato anteriore dell'apparecchio è presente un avviso (vedere la sezione 2.6).

La radiazione laser di classe 1M è sicura in condizioni operative normali, purché non vengano usate ottiche telescopiche per osservare il fascio. Il nefoipsometro deve essere utilizzato solo in un ambiente esterno protetto. È necessario osservare le seguenti precauzioni durante l'utilizzo dell'apparecchio:

- Non osservare mai il fascio laser con strumenti ottici, in particolare con binocoli.
- Non guardare direttamente nel fascio laser.
- Non azionare il sensore quando lo sportello interno dell'involucro è aperto.
- Non azionare il sensore in posizione orizzontale (angolo di inclinazione massimo: 20°).
- Mantenere il percorso del fascio laser libero da materiali riflettenti.1

Il fascio laser emesso dal nefoipsometro CHM 15k viene generato da un laser integrato di classe 3B. Anche una breve esposizione a un fascio laser di classe 3B può causare lesioni agli occhi e alla pelle. La manutenzione e l'assistenza tecnica del sensore deve essere eseguita esclusivamente da personale con adeguata formazione. Non rimuovere in nessun caso la testa laser dall'unità ottica di misurazione.

2.3 Requisiti per il personale

- Il nefoipsometro CHM 15k deve essere installato e messo in funzione esclusivamente da personale con adeguata formazione e istruito in materia di sicurezza tecnica. L'allacciamento elettrico del nefoipsometro CHM 15k deve essere eseguito esclusivamente da un elettricista specializzato.
- Attività di manutenzione e configurazione del nefoipsometro CHM 15k devono essere eseguite esclusivamente da personale dell'assistenza di G. Lufft GmbH o da personale autorizzato e adeguatamente formato del cliente.
- Ogni persona incaricata di installare e mettere in funzione il nefoipsometro CHM 15k deve aver letto e compreso le istruzioni per l'uso complete.
- Durante tutte le attività con l'apparecchio il personale non deve essere eccessivamente stanco né sotto l'influsso di alcol, medicinali o sostanze intossicanti. Il personale non deve presentare disabilità fisiche che limitino temporaneamente o permanentemente l'attenzione e le capacità intellettive.

2.4 Indicazioni di sicurezza per trasporto, installazione, messa in funzione e pulizia

• Il nefoipsometro CHM 15k deve essere caricato e trasportato esclusivamente imballato e in posizione di trasporto (vedere la Figura 5) usando idonei dispositivi di sollevamento e di trasporto.

S Lufft

- Il nefoipsometro CHM 15k imballato deve essere assicurato in modo adeguato per impedire spostamenti, urti, scosse e simili nel mezzo di trasporto, ad esempio per mezzo di cinghie di tensione
- Se il nefoipsometro CHM 15k non viene montato subito, deve essere protetto da fattori esterni e messo in sicurezza in modo adeguato per l'immagazzinaggio.
- L'installazione del nefoipsometro CHM 15k deve essere eseguita da almeno 2 persone.
- Dopo l'installazione del nefoipsometro CHM 15k è necessario controllare e assicurarsi che sull'apparecchio non si siano verificati cambiamenti rilevanti per la sicurezza.
- Lo sportello interno dell'involucro deve essere aperto esclusivamente dal personale dell'assistenza di G. Lufft GmbH o da personale autorizzato e adeguatamente formato del cliente.
- Non utilizzare il nefoipsometro CHM 15k con il pannello di vetro danneggiato; inviare l'apparecchio a G. Lufft per farlo riparare
- Pericolo di esplosione: il nefoipsometro CHM 15k non è idoneo per aree a rischio di esplosione.

2.5 Descrizione degli avvisi

2.5.1 Descrizione dei simboli di pericolo

Simbolo	Utilizzo
	Avviso di un pericolo generico
*	Avviso di fascio laser
4	Avviso di tensione elettrica pericolosa
	Avviso di superficie surriscaldata
	Conformemente alla legge in materia di apparecchiature elettriche ed elettroniche, negli stati membri dell'UE G. Lufft GmbH ritira gli apparecchi vecchi e li smaltisce in modo professionale. Gli apparecchi interessati sono contrassegnati con questo simbolo.

2.5.2 Significato delle indicazioni di pericolo

2.6 Indicazioni di sicurezza sul nefoipsometro CHM 15k

Nella Figura 1 sono mostrate le indicazioni di sicurezza apposte sull'apparecchio. La targhetta di identificazione e la connessione di terra si trovano sul lato posteriore dell'apparecchio, sulla base dell'involucro.

Figura 1 Indicazioni di sicurezza.

2.7 Utilizzo conforme

Il funzionamento in sicurezza del nefoipsometro CHM 15k è garantito solo in caso di utilizzo conforme secondo le indicazioni fornite in questo manuale di istruzioni.

L'apparecchio deve essere usato esclusivamente per il funzionamento monofase con collegamento a una rete pubblica a bassa tensione secondo IEC38, 6a edizione 1983.

Il nefoipsometro può essere usato con un'inclinazione massima di 20°. Ogni altro utilizzo è considerato non conforme e l'operatore sarà il solo responsabile di eventuali danni consequenziali.

Un utilizzo in posizione orizzontale rappresenta un rischio per la sicurezza di altre persone ed è espressamente vietato.

Per assicurare un funzionamento senza problemi, è necessario osservare un regolare ciclo di pulizia e manutenzione (vedere il capitolo 10).

3 Dati tecnici

3.1 Informazioni per l'ordine

Varianti dell'apparecchio				
Numero d'ordine	Descrizione	Alimentazione	Lunghezza del cavo	
8350.00	CHM 15k EU Base	230 V CA ±10%	10 m	
8350.01	CHM 15k EU + modem DSL	230 V CA ±10%	3 m	
8350.01-BW	CHM 15k EU + modem DSL + codice identificativo AIT	230 V CA ±10%	3 m	
8350.03	CHM 15k EU + predisposizione DSL	230 V CA ±10%	10 m	
8350.10	CHM 15k US/CA	115 V CA ±10%	10 m	
8350.B050	CHM 15k EU Base	230 V CA ±10%	50 m	

Tabella 1 Varianti dell'apparecchio.

Informazioni generali: la lunghezza standard del cavo RS485, LAN (o DSL) e di alimentazione è 10 m. DSL e batteria di backup sono opzionali e disponibili anche per le varianti a 115 V CA.

3.2 Dati tecnici

Parametri di misurazione				
Intervallo di misura	0 m 15 km (0 50000 ft)			
Distanza di rilevamento nubi	10 m 15 km (33 50000 ft)			
Risoluzione di misura	5 m			
Risoluzione dati NetCDF (*)	Da 5 m a 30 m in incrementi di 5 m (impostabile dall'operatore) 15 m (impostazione predefinita)			
Dati NetCDF ad alta risoluzione	5 m (definiti per vettore HR limitato di dati NetCDF)			
Tempo di registrazione e ciclo di report (*)	2 s … 600 s (programmabile) Impostazione predefinita: 15 s			
Oggetti misurabili	Aerosol, nuvole (goccioline, cristalli di ghiaccio)			
Parametri misurati e nominali	Profili di retrodiffusione Altezza delle nuvole fino a 9 strati incl. profondità di penetrazione (spessore della nuvola), distanza di rilevamento max. (MXD), visibilità verticale (VOR), Sky Condition Index (SCI), grado di copertura (TCC, BCC),			
Principio di misurazione	Lidar (ottico, tempo di propagazione della luce)			
Parametri ottici				
Sorgente luminosa	Laser allo stato solido Nd:YAG, pompaggio a diodo			
Lunghezza d'onda	1064 nm			
Ampiezza di banda	0,1 nm			
Potenza di uscita P _{avg} (max)	59,5 mW			
Frequenza di ripetizione dell'impulso	5 – 7 kHz			
Durata dell'impulso	1 ns			
Divergenza del fascio	<0,5 mrad			
Ampiezza di banda del filtro	1 nm			

Stabilità a lungo termine su 12 mesi (frequenza di ripetizione dell'impulso)	<10%
Ricevitore FOV	0,45 mrad
NOHD esteso	1 km (con apertura di 50 mm)
Interfacce dati	
Interfacce standard	RS485 half duplex (ASCII); LAN (http, (S-) FTP, NetTools)
Interfacce opzionali	DSL, RS232 (assistenza)
Parametri elettrici	
Alimentazione	230 V CA ±10% <u>o</u> 115 V CA ±10%
Frequenza di rete	50 Hz, 60 Hz
Consumo di energia	Max. 800 VA con riscaldamento dell'involucro (standard); Max. 300 VA senza riscaldamento dell'involucro
Consumo di energia in W (in	Riscaldamento dell'unità di misurazione: 250 W @115 / 230 V CA
base alla tensione dei rete)	Riscaldamento dell'involucro: 450 W @115 / 230 V CA
	Battena di backup interna per i componenti elettronici (> 1 ora.)
Sicurezza dell'apparecchio	1
Requisiti ambientali	ISO 10109-11
Classe di protezione laser	1M secondo IEC 60825-1:2014, conforme a CFR 1040.10
Tipo di protezione	IEC / EN 60529: IP 65; IEC / EN 61010-1: IK06 (1 Joule)
Classe di protezione	Classe di protezione I (conduttore di protezione necessario)
Categoria di sovratensione	
Grado di inquinamento nell'involucro IP65	2
EMC	EN 61326 classe B (settore industriale)
Conformità	CE
Condizioni di esercizio	
Intervallo di temperatura	Tra -40 °C e +55 °C
Umidità relativa dell'aria	Tra 0% e 100%
Vento	60 m/s
Altezza massima di esercizio	2000 m
Dimensioni	
Dimensioni involucro (base x altezza)	L x P x H = 0,5 m x 0,5 m x 1,55 m
Dimensioni imballo	L x P x H = 0,75 m x 0,86 m x 1,80 m
Peso	
_	70 kg (sistema completo)
Peso	9.5 kg (unità di misurazione - parte di ricambio più pesante)
Requisiti di installazione	
Sistemi di distribuzione in	Sistema TN-S: rete con messa a terra, involucro del nefoipsometro
bassa tensione idonei	CHM 15k collegato a massa, conduttore del neutro e conduttore di protezione cablati e collegati separatamente nell'apparecchio Sistema TN-C-S: involucro del nefoipsometro CHM 15k collegato a massa, conduttore del neutro e conduttore di protezione combinati in un conduttore all'esterno dell'apparecchio ma cablati e collegati separatamente nell'apparecchio
l ipo di collegamento	Collegamento fisso, messa a terra mediante morsetto di terra (vedere la Figura 12)
Risorse fornite dall'operatore	
Protezione da fulmini	- Viene fornita una protezione interna da fulmini

	 Una protezione esterna da fulmini è opzionale secondo DIN V VDE 0185-3
Messa a terra	Impianto di messa a tera secondo DIN V VDE 0185-3
Requisiti per installazione esterna	 Sistema di separazione per isolare la rete a bassa tensione nelle vicinanze del nefoipsometro CHM 15k Facilità di accesso Indicazione di appartenenza al nefoipsometro CHM 15k Protezione a monte in base alla sezione longitudinale del cavo ≥ 6 A. B o C

Tabella 2 Dati tecnici.

(*) la combinazione di elevata risoluzione temporale e spaziale sull'intervallo complessivo è limitata dalla dimensione del file e dal tempo di elaborazione. Esempio: Risoluzione di 15 m su 15 km di portata con risoluzione di 15 s → Dimensione del file giornaliero 24 MB (modalità operativa standard); una combinazione di 5 m di risoluzione sull'intervallo complessivo di 15 km e 2 s di risoluzione temporale determinerebbe file di dimensione >500 MB. Una combinazione di file NetCDF di dimensione >100 MB non è supportata da Lufft.

4 Descrizione tecnica

Il nefoipsometro CHM 15k viene usato principalmente per definire l'altezza delle nuvole, le profondità di penetrazione delle nuvole, il grado di copertura, la visibilità verticale e lo strato di aerosol. I dati calcolati vengono trasferiti tramite trasmissione remota per mezzo di interfacce digitali standard.

Il principio di misurazione utilizzato dal nefoipsometro CHM 15k è il metodo Lidar (Lidar: Light Detection and Ranging): Brevi impulsi luminosi generati da un laser a stato solido Microchip vengono emessi nell'atmosfera, dove vengono diffusi da aerosol, goccioline e molecole d'aria. La parte di luce che viene riflessa indietro al nefoipsometro viene ulteriormente analizzata. Il tempo di propagazione degli impulsi laser viene misurato e utilizzato per il calcolo della distanza dell'evento di diffusione.

Il profilo dell'altezza del segnale riflesso viene analizzato per calcolare l'intensità di retrodiffusione β_{raw} come primo parametro di output dell'apparecchio. Da β_{raw} è possibile calcolare il coefficiente di retrodiffusione attenuato β_{att} con una costante di calibrazione valida per l'apparecchio CHM 15k. DA questi dati vengono calcolati i diversi parametri desiderati come l'altezza delle nuvole e degli strati di aerosol.

Il sistema di rilevamento del nefoipsometro CHM 15k si basa su un processo di conteggio dei fotoni. Può essere usato solo in combinazione con un laser come quello integrato nel nefoipsometro CHM 15k. La ridotta larghezza di banda laser consente di usare un filtro ottico con larghezza di banda di 1 nm (o inferiore) davanti al rilevatore richiesto, per sopprimere la luce di sfondo in modo efficiente calcolare la media dei dati nell'arco di alcuni minuti. Il calcolo della media dei segnali per ottenere uno specifico rapporto segnale / rumore è fondamentale per le misurazioni Lidar che generano profili di aerosol. Rispetto a procedure di misurazione analogiche, questi processi si distinguono per sensibilità e precisione di rilevamento molto elevata. Questa tecnologia è anche resistente a disturbi del segnale.

Il nefoipsometro CHM 15k è:

- un apparecchio compatto completo di ventola di riscaldamento e raffreddamento
- in grado di funzionare alle condizioni ambientali indicate nei dati tecnici (vedere 3 Dati tecnici)
- modulare; ad esempio, l'unità di misurazione laser (LOM, il modulo ottico laser) all'interno dell'apparecchio può essere sostituita con un'altra unità LOM sul campo
- un apparecchio progettato per un funzionamento continuo 24/7

4.1 Struttura del nefoipsometro CHM 15k

L'involucro del nefoipsometro CHM 15k è composto da due strati in alluminio inossidabile. L'involucro esterno ha il compito di attenuare gli effetti di

- radiazione solare
- vento
- pioggia
- neve

sull'involucro interno che contiene l'unità di misurazione. L'effetto camino che si verifica tra l'involucro esterno e quello interno supporta questo processo.

Il coperchio dell'involucro protegge l'involucro da sporcizia e precipitazioni.

Nel coperchio dell'involucro è presente la finestra per l'uscita e l'ingresso del laser. La parete divisoria nel coperchio separa l'area di emissione dalla sensibile area di ricezione. Un deflettore dell'aria all'interno del coperchio dirige il flusso d'aria da entrambe le ventole direttamente sul pannello di vetro dell'involucro interno.

L'involucro interno contiene tutta l'attrezzatura per il funzionamento del nefoipsometro CHM 15k. L'inserimento dei cavi per dati, alimentazione, messa a terra e collegamento delle ventole esterne è realizzato mediante pressacavo. Per la compensazione della pressione l'involucro interno è dotato di un elemento apposito con una membrana in Goretex[®].

L'estremità superiore dell'involucro interno presenta una finestra divisa in due in vetro Float decolorato. I pannelli sono piegati con angolo di Brewster. In tal modo si garantisce un passaggio della luce con perdita ridotta e un'autopulizia ottimale dei pannelli. La pulizia dei pannelli è supportata dalle ventole posizionate sul lato posteriore dell'apparecchio: tali ventole vengono disattivate a intervalli orari e in caso di pioggia o neve. Le ventole vengono usate anche per dissipare il calore dall'involucro interno. La manutenzione delle ventole viene eseguita tramite la parete posteriore rimovibile del nefoipsometro CHM 15k.

Lo sportello esterno consente di accedere all'interno dell'involucro e ai pannelli di vetro, ad esempio per scopi di pulizia. L'accesso all'area interna dell'apparecchio è consentito da uno sportello interno. Sportello esterno e sportello interno sono assicurati con meccanismi di chiusura differenti. Lo sportello interno dell'involucro deve essere aperto esclusivamente dal personale dell'assistenza di G. Lufft GmbH o da personale autorizzato e adeguatamente formato del cliente.

4.2 Unità funzionali dell'involucro interno

Le unità funzionali dell'apparecchio sono:

- unità di invio e ricezione (unità di misurazione LOM)
- scheda di controllo e relativi componenti collegati
- alimentazione 12 15 V CC per i componenti elettronici
- trasformatore 48 V CC per le ventole
- ventole e sensori di temperatura
- dispositivo di protezione da fulmini e sovratensioni per cavo elettrico, LAN, RS485

Le unità funzionali hanno una struttura modulare, vengono fissate separatamente all'involucro interno e possono essere rimosse e sostituite separatamente per scopi di assistenza.

4.2.1 Diagramma funzionale

Figura 2 Diagramma funzionale. I numeri tra parentesi corrispondono alla numerazione dell'elenco delle parti di ricambio (vedere il manuale di manutenzione).

Nella Figura 2 viene mostrato chiaramente che il controller principale è l'unità centrale. Il controller principale comanda e controlla tutte le funzioni dell'apparecchio qui descritte e fornisce i relativi valori di stato.

4.2.2 Controllo funzionale e stato dell'apparecchio

Figura 3 Schema del ciclo di misurazione standard.

Il controllo funzionale del nefoipsometro CHM 15k (misurazione e valutazione) avviene tramite un FPGA e un processore OMAP. L'intervallo di registrazione (non rappresentato qui) si compone di più cicli di misurazione calcolati nel processore OMAP mentre nel FPGA vengono elaborati processi con maggiore risoluzione temporale fino a intervalli di 1s.

Nella Figura 3 viene mostrato il ciclo di misurazione interno che avviene ogni secondo. I dati misurati e la valutazione di parametri di stato vengono verificati dopo ogni ciclo di misurazione. Se i valori non rientrano nelle tolleranze o se si verifica un guasto hardware, il ciclo di misurazione standard viene nuovamente inizializzato e viene generato e visualizzato un messaggio di errore.

Tuttavia vi sono parti che vengono lette e controllate con una maggiore risoluzione temporale come, ad esempio, il controllo della temperatura, o che vengono eseguite nell'intervallo di registrazione come, ad esempio, la valutazione della sporcizia della finestra e il controllo delle ventole in caso di precipitazioni.

Lo stato del ricevitore dipende dai risultati del monitoraggio di livello di rumore, tensione di alimentazione e corrente continua con e senza impulso di prova. A causa della sua struttura interna la sorgente luminosa è essenzialmente caratterizzata dalla frequenza di ripetizione dell'impulso che può diminuire con l'invecchiamento della sorgente luminosa. La frequenza dell'impulso viene monitorata. A frequenze di impulso inferiori a 4,5 kHz viene generato un messaggio di errore. Viene analizzato anche il riflesso del fascio laser dal pannello della finestra, per monitorare la sporcizia della finestra. Tutti i valori ottenuti vengono restituiti in telegrammi di dati e fanno parte dei file NetCDF. Inoltre è disponibile un watchdog software che controlla i processi firmware. Valori definiti e valori di stato vengono restituiti nel telegramma di dati esteso e nei file NetCDF. Il messaggio standard contiene informazioni grezze sul codice di stato (vedere 8.5 Codice di stato).

5 Trasporto e fornitura

AVVISO

Un utilizzo non conforme può danneggiare l'apparecchio.

- ➡ II nefoipsometro CHM 15k deve essere trasportato e spostato solo con mezzi di trasporto e dispositivi di sollevamento idonei.
- Il nefoipsometro CHM 15k deve essere caricato e trasportato esclusivamente imballato e in posizione di trasporto (vedere la Figura 5).
- Il nefoipsometro CHM 15k deve essere assicurato in modo adeguato per impedire spostamenti, urti, scosse e simili nel mezzo di trasporto.

La fornitura include:

- nefoipsometro CHM 15k
- Raccoglitore ad anello con documenti
 - Maschera per foratura
 - o Istruzioni di installazione meccanica
 - Istruzioni di installazione elettrica
 - Protocollo di prova
 - o Elenco dei numeri di serie dei componenti incorporati
 - Istruzioni per l'uso e scheda USB con software di comunicazione
- Elementi di fissaggio:
 - 4 tasselli S12 (Fischer Co.)
 - o 4 viti M10 x 140-ZN (DIN 571)
 - 4 rondelle ISO 7093-10.5-KST/PA
 - 4 rondelle ISO 7093-10.5-A2

Su richiesta del cliente:

- Alla fornitura può essere aggiunto un telaio adattatore a cui può essere fissato il nefoipsometro CHM 15k con le viti di fissaggio disponibili.
- Può essere fornito un telaio adattatore angolato, ad esempio per ottenere un'inclinazione di 15° del nefoipsometro in modo da evitare la radiazione solare diretta.

Informazioni sulle unità di misurazione

Chiave inglese/per dadi per 4x viti M10: 18 mm o 7/16 BSF o 3/8 Worth. Invece della vite M10 è anche possibile usare una vite da 3/8 o 25/64 pollici insieme al corrispondente ancoraggio.

Per ulteriori dettagli tecnici, rivolgersi a G. Lufft GmbH.

Stato operativo del nefoipsometro CHM 15k alla consegna

Modalità di trasferimento	1, generazione automatica del telegramma standard
Numero apparecchio RS485	16
Baudrate	9600
Durata della misurazione	15 s

Per informazioni più dettagliate sugli stati operativi vedere 8 Comunicazione su RS485 ed Ethernet.

6 Installazione

AVVISO

- ➡ Per la creazione e la dimensione della base è responsabile l'operatore del nefoipsometro CHM 15k. La base di appoggio deve avere dimensioni tali da resistere allo stress permanente causato dal peso dell'apparecchiatura e da influenze esterne.
- L'apparecchio non deve essere aperto durante l'installazione e la messa in funzione, per impedire che vi penetrino sporcizia o umidità.

Il nefoipsometro CHM 15k viene installato e fissato su una base di appoggio in cemento idonea. Viti di livellamento integrate sul lato inferiore della base consentono l'allineamento verticale dell'apparecchio e di conseguenza l'orientamento verticale dell'unità di misurazione.

II nefoipsometro CHM 15k deve essere installato solo in un ambiente esterno protetto. Evitare la radiazione di forti sorgenti luminose. L'angolo di incidenza dei raggi solari deve essere ≥ 15° rispetto alla verticale. Richiedere un idoneo adattatore angolato. La distanza da alberi e cespugli deve essere tale da impedire a foglie e aghi di raggiungere le uscite del laser dell'apparecchio. Durante l'installazione del nefoipsometro CHM 15k è necessario rispettare le seguenti distanze minime:

- da apparecchi radio mobili
 da trasmettitori stazionari, stazioni base (potenza di trasmissione ≥ 100 W)
 25 m
- da trasmettitori stazionari, stazioni base (potenza di trasmissione ≥ 100 W)
 tra due nefoipsometri (possibile interferenza ottica)

6.1 Installazione del nefoipsometro CHM 15k

6.1.1 Lavori preparatori

Il nefoipsometro CHM 15k necessita di una superficie di appoggio di 50 x 50 cm. Deve essere posizionato e montato in modo stabile e saldo su una base di appoggio in cemento di dimensioni sufficienti. L'inclinazione della superficie di appoggio non deve essere superiore a 5 mm/m . Prima di installare il nefoipsometro CHM 15k è necessario eseguire dei fori nella base in cemento seguendo la maschera per foratura (vedere la Figura 4) e inserirvi dei tasselli (Ø 12 mm, 4 tasselli sono inclusi nella fornitura). Quando si esegue l'operazione, fare attenzione alla direzione di apertura dello sportello esterno per l'allacciamento elettrico alla scatola di raccordo dell'operatore.

Figura 4 Maschera di foratura.

- 1 Maschera di foratura
- 2 Fori (ø 12 mm) per il fissaggio
- 3 Possibilità di allacciamento elettrico (scatola di raccordo)
- 4 Direzione di apertura dello sportello esterno

6.1.2 Installazione sulla base

Il peso del nefoipsometro CHM 15k è 70 kg, carichi pesanti potrebbero causare gravi lesioni.

Non spostare il nefoipsometro CHM 15k senza un ausilio adeguato
 L'installazione del nefoipsometro CHM 15k deve essere eseguita da almeno due persone.

Installare il nefoipsometro CHM 15k come descritto di seguito:

Scaricare il nefoipsometro CHM 15k dal mezzo di trasporto e posizionarlo il più vicino possibile al luogo di installazione usando un dispositivo di sollevamento idoneo.

Figura 5 Nefoipsometro CHM 15k imballato e in posizione di trasporto.

- ➡ Rimuovere l'imballo.
- ⇒ Svitare i pannelli laterali.
- Rimuovere i pannelli laterali uno alla volta.

Figura 6 Nefoipsometro CHM 15k con imballaggio in polistirolo o carta a nido d'ape.

- 1 Elementi in polistirolo
- 2 Nefoipsometro CHM 15k
- 3 Pallet

Sollevare con cautela il nefoipsometro CHM 15k manualmente dagli elementi in polistirolo osservando tutte le disposizioni di sicurezza (posizioni di sollevamento: Figura 7).

Figura 7 Posizioni di sollevamento e protezione per la presa (profilo di protezione del bordo).

Possibilità di trasporto successivo:

- Trasporto manuale: afferrare l'apparecchio per le aperture indicate dalle frecce (Figura 7)
- ➡ Trasporto con carrello a mano: in caso di maggiore distanza dalla base di appoggio in cemento (Figura 8)

AVVISO

- In caso di trasporto con un carrello a mano assicurarsi che il nefoipsometro CHM 15k sia posizionato con lo sportello esterno verso il basso (vedere la Figura 8)
- Dovrebbe essere posizionato un elemento ammortizzante (ad esempio, del pluriball) tra il nefoipsometro CHM e il carrello

Figura 8 Trasporto con carrello a mano.

Posizionare il nefoipsometro CHM 15k in posizione di installazione (verticale) sulla base di appoggio in cemento.

Fare attenzione alla posizione dello sportello esterno relativamente alla scatola elettrica di raccordo dell'operatore (vedere la Figura 4).

➡ Premontare il nefoipsometro CHM 15k con le rondelle e le viti di fissaggio in dotazione (vedere la Figura 9) sulla base di appoggio in cemento senza serrare.

Figura 9 Elementi di fissaggio.

- 1 Tassello S12
- 2 Vite di livellamento 5 mm (integrata nella base dell'apparecchio)
- 3 Vite DIN 571-10 x 140-ZN
- 4 Rondella ISO 7093-10.5-A2
- 5 Rondella ISO 7093-10.5-KST/PA
- 6 Base di appoggio in cemento
- ➡ Orientare il nefoipsometro CHM 15k in verticale usando le viti di livellamento integrate nella base dell'apparecchio (posizionare una livella su un lato e sulla parte anteriore).
- Serrare le viti di fissaggio (dadi).
- Rimuovere dall'alto la protezione per la presa (profilo di protezione del bordo) e fissarla nella base per il trasporto successivo.

6.2 Allacciamento elettrico

AVVISO

Un allacciamento non corretto può danneggiare l'apparecchio

- L'allacciamento elettrico del nefoipsometro CHM 15k deve essere eseguito solo da un elettricista qualificato di G. Lufft GmbH o un altro elettricista qualificato. Una mancata osservanza di questo requisito determina l'annullamento della garanzia e delle relative coperture.
- L'operatore è tenuto a soddisfare tutti i requisiti per l'allacciamento del nefoipsometro CHM 15k secondo EN 61016-1, ad esempio l'installazione di una scatola di raccordo.

Nella Figura 10 viene mostrato uno schizzo dell'allacciamento elettrico del nefoipsometro CHM 15k. L'alimentazione (1) dell'apparecchio deve essere fornita mediante un dispositivo di sezionamento esterno. Deve essere facilmente accessibile, per poter disinserire l'apparecchio dalla rete, se necessario. Il dispositivo di sezionamento deve essere contrassegnato come riservato all'apparecchio e deve possedere una protezione a monte in base alla sezione longitudinale del cavo \geq 6 A, B o C. Una scatola di raccordo deve essere installata a una distanza non superiore a 3 m. Il cavo di terra deve essere più corto possibile. Gli allacciamenti devono essere eseguiti conformemente alle disposizioni specifiche del Paese.

Figura 10 Disegno schematico dell'allacciamento elettrico.

- 1 Alimentazione
- 2 Sezionatore
- 3 Dati
- 4 PC per accesso remoto (con LAN/DSL; il PC non deve essere locale)
- 5 Protezione da fulmini

Il contatto con parti sotto tensione comporta il pericolo di shock elettrico, che a sua volta può causare lesioni gravi o letali.

Disattivare l'interruttore esterno prima di iniziare l'installazione dell'apparecchio e assicurarsi che non possa essere riattivato

I collegamenti elettrici al nefoipsometro CHM 15k sono specificati in dettaglio nella Figura 11. Eseguire il collegamento del cavo di rete e del cavo dati come mostrato nella figura. Si consiglia di integrare un dispositivo aggiuntivo di protezione contro le sovratensioni in tutti i collegamenti, per impedire danni alla scatola di raccordo. Nel nefoipsometro CHM 15k è garantita una protezione interna da fulmini. L'allacciamento del nefoipsometro CHM 15k viene eseguito mediante i seguenti cavi forniti in dotazione:

 Cavo di alimentazione 230 V CA (cavo di rete); codice colore: conduttore neutro: blu; conduttore: marrone; conduttore di terra: verde-giallo; lunghezza standard 10 m OPPURE

Cavo di alimentazione 115 V CA (cavo di rete); codice colore: Conduttore: nero; conduttore neutro: bianco; conduttore di terra: verde / verde-giallo

Figura 11 Installazione elettrica del nefoipsometro CHM 15k.

2. Cavo di terra 10 mm² (1 polo, verde-giallo), lunghezza standard 2,6 m, per la messa a terra (vedere la Figura 12). Il cavo di terra deve essere più corto possibile.

Figura 12 Allacciamento della messa a terra sulla base dell'apparecchio.

3. Cavo dati (RS 485): A (-) conduttore: giallo; B (+) conduttore: verde; RS485 - Terra: bianco e marrone; schermatura in base alle esigenze: (vedere la Figura 13); lunghezza standard 10 m.

Figura 13 Collegamento RS485 a un convertitore di segnale.

- 4. Cavo dati (LAN): dotazione con un connettore standard RJ45 per il collegamento a un computer remoto, hub o switch, lunghezza standard 5 o 10 m.
- 5. *Opzionale al posto del punto 4*: Cavo dati (DSL): dotazione con un cavo dio collegamento a 2 poli per il collegamento a un modem DSL (vedere la Figura 14).

La designazione RDA(-), RDB(+) viene definita diversamente dai vari produttori. Lufft qui usa la notazione di B&B Electronics.

Figura 14 Connessione DSL.

7 Messa in funzione e disattivazione

7.1 Messa in funzione con la connessione RS485

Prerequisiti:

- Il nefoipsometro CHM 15k è stato installato correttamente.
- Il cavo di controllo (RS485), il cavo di messa a terra e il cavo di rete (230 V CA) sono collegati.
- Per il monitoraggio delle comunicazioni è disponibile un programma terminale come, ad esempio, HyperTerminal in Windows, configurato come segue per la comunicazione:
 - Baudrate: 9.600
 - Bit di dati: 8
 - Parità: nessuna
 - Bit di stop: 1

⇒

⇒

- Controllo di flusso: nessuno

ATTENZIONE

Dopo l'attivazione dell'alimentazione il nefoipsometro CHM 15k classe 1M emette un fascio laser invisibile dall'uscita sulla parte superiore dell'apparecchio. L'osservazione della radiazione di classe 1M con strumenti ottici può causare gravi lesioni agli occhi.

Non osservare mai il fascio laser con strumenti ottici (binocolo).

Evitare l'osservazione diretta del fascio laser.

Dopo l'allacciamento della tensione di alimentazione, il nefoipsometro CHM 15k si avvia da solo. Durante la procedura di avvio viene eseguito un autotest interno come, ad esempio, l'attivazione delle ventole per alcuni secondi. La comunicazione con l'apparecchio è possibile entro 1 minuto. Il nefoipsometro CHM 15k è pienamente funzionante dopo un fase di riscaldamento di durata variabile (in base alla temperatura esterna). Il tempo necessario affinché i dati di misurazione siano disponibili in alta qualità può variare tra 2 minuti (avvio a caldo) e un'ora (avvio a freddo a -40 °C).

Il nefoipsometro CHM 15k invia automaticamente telegrammi di dati standard quando la procedura di avvio è terminata. Fa parte della configurazione predefinita e può variare in base alle impostazioni di avvio del nefoipsometro CHM 15k specifiche dell'utente. La generazione automatica ogni 15 s è utile per verificare se la comunicazione funziona correttamente, senza dover immettere comandi.

Per modificare il comportamento di avvio che deve essere usato all'avvio, come il polling, la modalità automatica o il telegramma, vedere il capitolo8 Comunicazione su RS485 ed Ethernet.

Comandi di prova per la comunicazione RS485

È possibile testare la comunicazione con questo comando (RS485Number = 16 (valore predefinito)):

set<SPACE><RS485Number>:Transfermode=0<CR><LF>

Con questo comando l'impostazione cambia dalla modalità automatica alla modalità di polling. La prova in modalità di polling è utile per evitare interruzioni tramite telegrammi inviati automaticamente durante l'inserimento. Sono disponibili 9 tipi di telegramma:

- Telegramma di dati standard (denominazione: 1 oppure s)
- Telegramma di dati esteso

Telegramma di dati grezzi

(denominazione: 2 oppure l) (denominazione: 3 oppure a)

- ezzi (denominazione: 3 op
- Telegramma definito dall'utente (denominazione: 4, 5, ..., 9)

Nel capitolo 8 vengono descritti in dettaglio i possibili comandi RS485 e i loro effetti. Alcuni dei comandi per un test funzionale dell'apparecchio e per l'impostazione iniziale dell'apparecchio sono elencati nella Tabella 3.

Comando	Descrizione	Risposta (abbreviata)
get <space>16:L<cr><lf></lf></cr></space>	Invio del telegramma di dati esteso	vedere 8.3.4
set <space>16:RNO=14<cr><lf></lf></cr></space>	Impostazione dell'indirizzo RS485 da 16 a 14	set 16:RNO=14
set <space>16:Baud=4<cr><lf></lf></cr></space>	Impostazione del baudrate su 19.200	set 16:Baud=4
set <space>16:dt(s)=15<cr><lf></lf></cr></space>	Impostazione dell'intervallo di registrazione su 15 s	set 16:dt(s)=15
get <space>16:Lifetime(h)<cr><lf></lf></cr></space>	Lettura del contatore delle ore di esercizio del laser	get 16:Lifetime(h)

Tabella 3 Comandi per un test funzionale.

Al termine del test funzionale semplice del nefoipsometro CHM 15k:

- continuare a operare in modalità di polling oppure
- ripristinare la modalità di invio automatica

set<SPACE><RS485Number>:Transfermode=1<CR><LF>

Commento: questo comando riporta l'apparecchio nella modalità di trasmissione automatica con il telegramma standard 1.

Baudrate con la trasmissione di dati grezzi

Soprattutto in caso di modalità bus RS485 è necessario osservare le impostazioni del baudrate. Se è necessario un trasferimento di dati grezzi, ogni telegramma può avere una dimensione di 12 KB. Per ridurre il tempo di trasferimento tra due telegrammi di 15 s, è necessario impostare il baudrate su almeno 19.200 baud.

7.2 Messa in funzione con la connessione LAN

In aggiunta o in alternativa alla connessione RS485, è anche possibile usare una connessione LAN (Ethernet).

Prerequisito: un cavo LAN collegato (vedere 6.2 Allacciamento elettrico) oppure una connessione LAN via DSL con un modem di invio e ricezione DSL a metà strada.

Configurazione: Per la configurazione sono disponibili simultaneamente 3 indirizzi IP separati:

- 1. Un indirizzo fisso preconfigurato all'apparecchio
 - → 192.168.100.101, subnet 255.255.255.0
- 2. Assegnazione server DHCP (richiede un server DHCP)
- Indirizzo utente + Subnet + Gateway, vedere la sezione 8.7 Comunicazione via interfaccia Web Ethernet relativamente alla configurazione con una connessione LAN / WAN all'apparecchio e8.2, se questi valori vengono configurati tramite interfaccia RS485.

L'indirizzo dell'assistenza (1) non può essere modificato dall'utente. È sempre disponibile e può essere usato come collegamento diretto tra un laptop e il nefoipsometro CHM 15k.

Uno dei tre indirizzi IP può essere inserito in un browser Web per comunicare con l'apparecchio (vedere la Figura 15). Nella Figura 20 viene mostrata la scheda "Config Network" (Config. Rete) nel browser Internet

Firefox. Per la modifica dell'indirizzo IP dell'utente (3) è necessaria l'autorizzazione di Superuser (Superutente) nella scheda "Device" (Dispositivo).

La password del Superuser è: 15k-Nimbus

È possibile cambiare la password del Superuser, vedere la Figura 22.

L'interfaccia Web è stata testata con i seguenti browser Web:

- Internet Explorer 8 o versioni successive
- Firefox 3.6 o versioni successive
- Google Chrome
- Apple Safari

Nell'ambiente di rete DHCP (2) il nefoipsometro CHM 15k viene configurato automaticamente. La modalità DHCP può essere disattivata.

C) CH	IM - Cloud Hei	ght Meter	+	
•		10.64.102	.36	
	Device	Viewer	NetCDF Files	Config Sy

Figura 15 Vista del browser Firefox con una connessione al nefoipsometro CHM 15k (qui: indirizzo IP fisso).

Con questo comando è possibile richiedere l'indirizzo DHCP tramite una connessione RS485:

get<SPACE><RS485Number>:IPD<CR><LF>.

Se è disponibile, l'apparecchio invia l'indirizzo DHCP che, in un secondo passaggio, può essere usato in un browser Web per eseguire connettersi al sistema tramite una connessione LAN. L'indirizzo IP dell'utente viene richiesto o impostato dall'utente tramite RS485 usando il parametro IPS invece del parametro IPD. Ad esempio:

get<SPACE><RS485Number>:IPS<CR><LF>

set<SPACE><RS485Number>:IPS=xxx.xxx.xxx.xxx<CR><LF>

Per un ulteriore supporto della comunicazione rivolgersi a G. Lufft GmbH.

7.3 Disattivazione

Gli utenti avanzati devono scollegare con cautela l'apparecchio dall'alimentazione:

- Gli utenti con diritti di Superuser dovrebbero usare l'interfaccia Web: Eseguire l'accesso come Superuser e selezionare "SHUTDOWN SYSTEM" (Arresta il sistema) nella scheda di registro "Device" (Dispositivo).
- ⇒ Gli utenti RS485 possono immettere questo comando:

set<SPACE><RS485Number>:SHT<CR><LF>

➡ In entrambi i casi il sistema basato su Linux viene spento e i dati di misurazione vengono salvati nella scheda SD locale.

Dopo l'arresto "morbido" (Soft Shutdown) è possibile interrompere l'alimentazione principale senza pericolo di perdita dei dati.

➡ Per disinstallare il nefoipsometro CHM 15k e reinstallarlo in un diverso luogo, è necessario eseguire in ordine inverso i passaggi descritti nelle sezioni 6.1.2 Installazione sulla base e 6.2 Allacciamento elettrico.

7.4 Smaltimento

Avviso sullo smaltimento

Lo smaltimento del nefoipsometro CHM 15ks deve avvenire conformemente alle normative nazionali in materia. Gli apparecchi elettrici contraddistinti da questo simbolo non possono essere smaltiti con i rifiuti domestici o con i sistemi di smaltimento pubblici in Europa. È necessario rispedire gli apparecchi vecchi o giunti a fine vita al produttore, che provvederà a uno smaltimento gratuito.

8 Comunicazione su RS485 ed Ethernet

Il nefoipsometro CHM 15k supporta le interfacce RS485 (sezione 8.2) ed Ethernet (sezione 8.7) per la comunicazione con l'apparecchio. Entrambe offrono la possibilità di trasferimento dati dei valori misurati e configurazione dell'apparecchio e possono essere usate contemporaneamente.

Per la comunicazione tramite interfaccia Ethernet è disponibile un'interfaccia Web. Indipendentemente dal sistema operativo, è possibile accedere al nefoipsometro tramite diversi browser Web.

Attraverso l'interfaccia Web è anche possibile scaricare manualmente nella scheda SD incorporata i dati di misurazione salvati nei file giornalieri NetCDF (sezione 8.4). Nel sistema è implementato anche un servizio AFD (ftp) (sezione 8.8) che consente, ad esempio, di trasferire dati sotto forma di blocchi da 5 minuti dai file NetCDF a un server FTP esterno.

La comunicazione RS485 richiede un programma terminale.

Invio e ricezione con RS485

L'interfaccia RS485 non consente il funzionamento simultaneo in invio e in ricezione (half duplex). Di conseguenza l'interfaccia viene commutata automaticamente internamente. Pertanto durante la ricezione di un telegramma di dati inviato automaticamente (vedere le sezioni da 8.3.3 Telegramma di dati standard a 8.3.5 Telegramma di dati grezzi) non è possibile inviare altri comandi (come descritto in 8.1). I flag in ingresso di inizio e di fine <STX> ed <EOT> mostrano una trasmissione di ricezione in corso.

8.1 Elenco dei parametri configurabili

Nella Tabella 4 vengono elencate le impostazioni principali. Verranno spiegate nelle successive sezioni. Per evitare effetti indesiderati sul funzionamento dell'apparecchio, alcune opzioni possono essere impostate solo in modalità Service (Servizio) (RS485) oppure in modalità Superuser o utente Service (Utente del servizio) (Ethernet) come, ad esempio, il nome dell'apparecchio. Nella Tabella 5 viene mostrato un elenco di parametri con proprietà protette da scrittura. Questi parametri sono in parte archiviati nell'EEPROM dell'apparecchio di misurazione e influenzano la valutazione dei dati e le impostazioni di base del sistema.

Le tabelle contengono gli intervalli di valori consentiti per ogni parametro e il valore predefinito impostato alla consegna dell'apparecchio. Sono anche indicati quelli che richiedono la modalità Service.

Parametro	Comando breve ^{<i>RS485</i>}	Valore predefinito	Intervallo / Breve descrizione
AfdMode*	AFD	0	0; 1, attivazione del trasferimento dati FTP
Altitude(m)	ALT	0	0 – 9999, unità sempre in metri!
ApdControlMode*	ACM	3	0, 1, modalità APD, modificare solo se se ne conosce il funzionamento
Azimuth	AZT	0	0-360 gradi x 100 ^{Web} (ad es. 12,25 ^{RS485} e 1225 ^{Web})
Baud	BAU	3	2 – 7 (4.800 – 115.200 baud)
BaudAfterError*	BAE	3	2-7 (4.800-115.200 baud)
BlowerMode	BLM	0	0 – 4
ChmTest*	CHT	0	0; 1
CloudDetectionMode	CDM	0	0; 1
Comment	СОМ		Commento, viene salvato anche nel file NetCDF

Parametro	Comando breve ^{RS485}	Valore predefinito	Intervallo / Breve descrizione
Comment 1 ^{RS485}	CM1		Campo di commento aggiuntivo (31 caratteri)
Comment 2 RS485	CM2		Campo di commento aggiuntivo (31 caratteri)
Comment 3 RS485	CM3		Campo di commento aggiuntivo (31 caratteri)
Comment 4 RS485	CM4		Campo di commento aggiuntivo (31 caratteri)
Comment 5 RS485	CM5		Campo di commento aggiuntivo (31 caratteri)
Comment 6 RS485	CM6		Campo di commento aggiuntivo (31 caratteri)
Comment 7 RS485	CM7		Campo di commento aggiuntivo (31 caratteri)
DateTime			Ora UTC nel formato GG.mm.AAAA;HH:MM:SS ^{RS485} e MMGGHHmmAAAA ^{Web} (vedere la Figura 22)
DeviceName*	DVN	СНМуухххх	CHM + Numero di serie dell'apparecchio
DeviceType*	DVT	0	Commutazione nel formato NetCDF (Firmware <1.000: valore predefinito CHM15k)
DHCPMode	DHM	1	0;1 attivazione / disattivazione della modalità DHCP
DNSServer	DNS		Impostazione / Query dell'indirizzo IP del server DNS
dt(s) ^{<i>RS485</i> LoggingTime^{Web}}	DTS	15	Tempo di registrazione e intervallo di report 5 – 600 s
Gateway	GAT	0.0.0.0	Impostazione / Query dell'indirizzo Gateway statico
HardwareVersion*	HWV		Dipende dall'apparecchio, vedere la Tabella 23
HttpPort	HPT	80	Specifica la porta http per la connessione all'interfaccia Web dell'apparecchio
IgnoreChars*	ICH	06	Codici ASCII a 8 bit
Institution	INS	NN	Istituto (testo)
IPaddress	IPS	0.0.0.0	Impostazione / Query dell'indirizzo IP statico
LanPort	LPT	11000	Porta per il trasferimento di telegrammi via Ethernet

E.

Parametro	Comando breve ^{RS485}	Valore predefinito	Intervallo / Breve descrizione
LanTelegramNumber	LTN	2	Formato telegramma per il trasferimento Ethernet [1, 9], vedere la sezione 8.3
LanTransferMode	LTM	1	Modalità di comunicazione per il trasferimento di telegrammi via Ethernet (0 = polling, 1 = invio automatico)
LaserMode*	LSM	1	Attivazione / Disattivazione del laser
Latitude	LAT	0	Da -90 a +90 gradi (x 10 ⁶) ^{Web} (ad es 52,430210 ^{RS485} e 52430210 ^{Web}) + indica gradi verso nord
Layer	NOL	3	1 – 9, numero di strati nuvolosi
Location	LOC	NN	Sequenza alfanumerica (max. 31 caratteri, non sono consentiti i seguenti segni \ / : * ? " < > _ # %)
Longitude	LON	0	Da -180 a +180 gradi (x 10 ⁶) ^{Web} (ad es 13,524735 ^{RS485} e 13524735 ^{Web}) + indica gradi verso est
MaxCrosstalkChars*	MCC	5	0 – 1024
NetMask	NMA	0.0.0.0	Impostazione / Query dell'indirizzo statico della NetMask
NtpMode	NTM	1	0; 1 attivazione / disattivazione di ntpd
NtpServer	NTS	0.0.0.0	Impostazione / Query dell'indirizzo del server di riferimento orario NTP
PeltierMode*	PTM	1	0; 1
RangeEnd	RAE	15345	Ultimo valore di distanza nel file NetCDF
RangeHRDim	RHD	32	Numero di punti dati nel vettore dati con risoluzione dell'altezza
RangeResolution	RAR	3	Numero degli intervalli di 5 m per la media del vettore dati NetCDF
RangeStart	RAS	15	Primo valore di distanza nel file NetCDF
Reset	RST	0	0; 1 Riavvio del nefoipsometro CHM (vedere 8.2.4)
ResetPassword*	RSP	0	0; 1; Ripristino della password Superuser predefinita
ResetSettings	RSG	0	0; 1 Ripristino delle impostazioni di fabbrica (vedere 8.2.4); interfaccia Web: "set to factory setting" (configura impostazioni di fabbrica)

-

Parametro	Comando breve ^{RS485}	Valore predefinito	Intervallo / Breve descrizione
RestartNetwork	RSN	0	0; 1 scrive le nuove impostazioni nel file di configurazione e riavvia la rete
RS485Number	RNO	16	0 – 99 (utilizzato con RS485)
ServiceMode ^{RS485}	SMO	0	0; 1 commuta nella modalità Service per modificare valori "critici"
Shutdown	SHT		0; 1 Arresto del sistema CHM
Standby	STB	0	0; 1; Modalità standby con telegramma di standby per la riduzione del consumo di corrente
SystemStatusMode	SSM	0	0; 1 se il valore impostato è 1, nel telegramma viene usato il codice di stato aggiornato
TimeOutRS485(s)*	TOR	30	5 – 3600
TimeZoneOffsetHours	ТΖН	0	Da -12 a 12 ore, ad es. CET è +1, viene usato per controllare la ventilazione del pannello
TransferMode	ТМО	0	0 – 9, vedere la sezione 8.3
TransferModeAfterError*	ТМЕ	0	0 – 9
UAPD*			Dipende dall'apparecchio, in mV (ad es 172000)
Unit(m/ft)	UNT	m	m, ft
UseAltitude	UAL	0	0; 1
WMOStationCode	WSC		Impostazione / Query dei codici della stazione WMO
Zenith	ZET	0	0 - 90 gradi (x 100) ^{Web} (ad es 10,25 ^{<i>RS485</i>} e 1025 ^{Web}) 0° è verticale

Tabella 4 Elenco dei parametri configurabili dell'apparecchio;

* è impostabile in modalità Service

Web Formato per l'interfaccia Web o disponibile solo nell'interfaccia Web

RS485 Formato per l'interfaccia RS485 o disponibile solo per l'interfaccia RS485.

Parametro	Comando breve ^{RS485}	Valore predefinito	Descrizione
APDBreakdown	UBR		Dipende dall'apparecchio (ad es 400000 mV)
ApdTempGradient	тсо	2400	Valore per confronto [mV/K]
IPDhcp	IPD		DHCP dell'indirizzo IP
LaserPower	LAP		Dipende dall'apparecchio (ad es. 50 mW)

LifeTime(h)	LIT		Numero di ore di esercizio del laser
Parameters ^{RS485}			Fornisce un elenco di tutti i parametri disponibili nella modalità RS485
SerLOM	LOM	TUByyxxxx	Numero di serie dell'unità di misurazione (LOM)
SystemLifeTime(h)	SLT		Numero complessivo di tutte le ore di esercizio del sistema CHM
TBCalibration	ТВС		Fattore di scalatura rispetto al riferimento
VersionFirmware	VFI		Versione del firmware (elaborazione dati e gestione)
VersionFPGA	VFP		FPGA Firmware
VersionLinux	VLI		Versione del sistema operativo

Tabella 5 Elenco dei parametri di sola lettura disponibili tramite RS485;

RS485 disponibile solo per RS485.

Spiegazioni della Tabella 4

AFDMode: attivazione / disattivazione del sistema di distribuzione file via LAN / WAN / DSL, per ulteriori informazioni vedere http://www.dwd.de/AFD/ oppure la sezione *8.8*.

Altitude(m): indicazione in metri dell'altezza dell'ubicazione sul livello del mare. Nei file NetCDF viene usato il parametro CHO (offset base della nuvola). Combina logicamente le variabili Altitude e UseAltitude.

Azimut: indicazione dell'angolo orizzontale in gradi.

Baud: modifica del baudrate (vedere 8.2.3 Modifica del baudrate).

BaudAfterError: baudrate predefinito dopo un errore di comunicazione (vedere 8.2.3 Modifica del baudrate).

BlowerMode: consente di verificare le ventole e commutare in diverse modalità operative. Modalità 2: "rest at night" (pausa di notte) funziona correttamente se anche il parametro TimeZoneOffsetHours è impostato correttamente. 0 = controllo orario e dipendente dal tempo atmosferico, 1 = nessun controllo orario dalle 22:00 alle 06:00, 2 = spento dalle 22:00 alle 06:00, 3 = sempre attivo, 4 = sempre spento.

DataTime: impostazioni di data e ora (vedere 8.2.5 Modifica delle impostazioni temporali).

dt(s): intervallo di registrazione (durante il funzionamento automatico è identico all'intervallo di report). Un intervallo più lungo determina una media oraria su più impulsi di fotoni e in tal modo un migliore rapporto segnale / rumore . Un aumento del fattore n determina un miglioramento pari alla radice del fattore. Tutti i dati grezzi nell'intervallo di tempo dt(s) vengono inclusi nella valutazione. Non viene eseguita una singola selezione di dati.

DeviceName (precedentemente FabName): denominazione dell'apparecchio (CHM) unita al numero di serie dell'apparecchio, ad esempio: CHM060001.

IgnoreChars: specifici codici HEX a due posizioni. Ad esempio: "06" corrisponde a <ack>; possono essere aggiunti a un elenco di caratteri che non devono essere valutati dall'apparecchio CHM 15k.

Institution: istituto o ditta.

Lasermode: attiva o disattiva il laser, opzione utile per i test.

LaserPower: potenza del laser in mW.

Latitude: latitudine del luogo, decimale. Esempio per Berlino: 52,51833 (corrisponde a 52° 31' 6" N).

Layer (Number of Layers): numero degli strati nuvolosi rappresentati nel telegramma esteso e nel file NetCDF.

Lifetime(h): query delle ore di esercizio del laser (durata utile del laser).

Location: Impostazione o query del luogo di installazione dell'apparecchio. Il nome dell'apparecchio è limitato a max. 31 caratteri, i caratteri \/:*?" <> | _ # % non sono consentiti.

Longitude: longitudine del luogo, decimale, orientamento positivo verso est. Esempio per Berlino: 13,40833 (corrisponde a 13° 24' 30" E).

MaxCrossTalkChars: il numero di caratteri che il nefoipsometro CHM 15k ignora entro l'intervallo di tempo "TimeOutRS485(s)", se non termina con <EOT> (04 HEX), <CR> (0D HEX), <LF> (0A HEX). Il parametro viene implementato per impedire al nefoipsometro di ripristinare il baudrate predefinito a causa di disturbi su linee di comunicazione instabili.

Parameters: query dell'elenco di parametri completo.

RS485Number: indica il numero di identificazione in un sistema bus necessario per selezionare uno specifico apparecchio tramite un'interfaccia dati. Oltre che all'indirizzo specifico, ogni apparecchio reagisce al numero di identificazione universale 99.

Standby: disattiva laser, riscaldamento e ventole.

SystemStatusMode: definisce la variante del codice di stato che deve essere usata nei telegrammi di dati. 0 = codici di stato precedenti che venivano usati dal nefoipsometro CHM 15k prima del firmware 1.x, 1 = codici di stato aggiornati, vedere la sezione 8.5 Codice di statos.

TimeOutRS485(s): impostare un intervallo di tempo per MaxCrossTalkChars e BaudAfterError (impostazione predefinita 30 s).

Time Zone offset hours: deve essere impostato per correggere il tempo notturno locale, ad esempio per disattivare le ventole durante la notte. Il sistema stesso funziona nel tempo UTC.

TransferMode: vedere da 8.3.1 Polling a 8.3.5 Telegramma di dati grezzi.

Unit(m/ft): indicazione delle dimensioni dell'obiettivo in metri (m) o piedi (ft).

UseAltitude: inclusione di Altitude(m) nell'output di dati. L'inserimento di un valore di Altitude di 60 m, ad esempio, aumenta l'altezza rilevata della base della nuvola di 60 m, se UseAltitude è impostato su 1 (true).

Zenith: i0ndicazione dell'angolo verticale in gradi: l'algoritmo Sky Condition Algorithmus (SCA) usa questo angolo per calcolare l'effettiva altezza della base della nuvola.

8.2 Configurazione dell'apparecchio con RS485

L'utente può modificare le impostazioni tramite l'interfaccia RS485:

- per controllare la procedura di misurazione;
- per configurare le interfacce di comunicazione.

8.2.1 Lettura di un parametro

La lettura di un parametro avviene con il comando:

get<SPACE><RS485Number>:<ParameterName><CR><LF>

Se <ParameterName> contiene una denominazione valida secondo la Tabella 4 o la Tabella 5, il valore viene fornito con il comando

<STX>get<SPACE><Device>:<ParameterName>=<Value>;<ASCIITwo'sComplement><CR><LF><E OT>

.

Esempio con il valore predefinito 16 per RS485Number e il nome dell'apparecchio CHM060003: Con il comando breve

get 16: DVN<CR><LF>

è possibile richiedere la denominazione dell'apparecchio e si ottiene, ad esempio, la seguente risposta:

<STX>get 16:DeviceName=CHM060003;3F<CR><LF><EOT>.

Ciascuno dei caratteri non stampabili <STX>, <CR>, <LF> ed <EOT> rappresenta un byte con codice esadecimale 02, 0D, 0A e 04. I caratteri 3F rappresentano il checksum del complemento a due che viene formato sull'intera riga di risposta, escludendo questi due caratteri (3F), secondo i formati di risposta della registrazione (vedere da 8.3.3 Telegramma di dati standard a 8.3.5 Telegramma di dati grezzi).

8.2.2 Definizione di un parametro

Un parametro di configurazione viene modificato con il comando:

set<SPACE><RS485Number>:<ParameterName>=<Value><CR><LF>

Una modifica eseguita correttamente viene confermata con:

<STX>set<SPACE><RS485Number>:<ParameterName>=<Value*>;<ASCIITwo'sComplement><CR ><LF><EOT>

Se <value> nel comandi di query rientra nell'intervallo di valori consentito, anche il nuovo valore impostato <value*> corrisponde a questo parametro. Se i valori sono troppo piccoli (o troppo grandi), viene usato il valore minimo (o massimo) dell'intervallo consentito. Per valori alfanumerici al posto di <value>, viene usato il valore predefinito.

Esempio con RS485Number = 16: Con il comando

set 16:Unit(m/ft)=ft<CR><LF>

o in forma breve

set 16:UNT=ft<CR><LF>

l'unità di misura di tutte le indicazioni di altezza nelle risposte di protocollo viene commutata da metri (m), l'unità predefinita, a piedi (ft). Poiché Unit(m/ft) appartiene ai parametri modificabili, deve essere confermato con

<STX>set 16:Unit(m/ft)=ft;2A<CR><LF><EOT>

. Il valore 2A è il checksum della riga di risposta.

8.2.3 Modifica del baudrate

La modifica del baudrate è un caso a parte. La modifica viene eseguita come descritto in 8.2.2 Definizione di un parametro. Quindi con

set<SPACE><RNO>:Baud=4<CR><LF>

Viene impsotato il baudrate n. 4 (corrispondente a 19200 Bit/s).

La correlazione tra numero del baudrate e baudrate viene mostrata nella Tabella 6.

N. baudrate	Baudrate [bit/s]
(0)	(1200)
(1)	(2400)
2	4800
3	9600
4	19200
5	38400
6	57600
7	115200

Tabella 6 Correlazione tra numero del baudrate e baudrate.

I baudrate 0 e 1 non rientrano nel limite di tempo specificato. Dopo l'invio di un comando di tipo "set" l'interfaccia viene immediatamente impostata sul nuovo baudrate. Un baudrate impostato in modo errato ha come conseguenza errori di trasmissione e renderebbe impossibile un normale reset a causa di una mancanza di capacità di comunicazione.

Dopo la scadenza dell'intervallo di tempo indicato in **TimeOutRS485** (valore predefinito: 30 s) il baudrate errato viene nuovamente sostituito con il baudrate definito nel parametro **BaudAfterError**. In tal modo si assicura che dopo questo tempo di attesa l'utente possa avere nuovamente il controllo dell'apparecchio. Il valore predefinito di **BaudAfterError** è 3, corrispondente a 9600 bit / secondo. Il valore predefinito dovrebbe essere modificato dall'utente anche ogni volta che viene usato, ad esempio, un baudrate pari a 19200.

8.2.4 Riavvio del sistema Linux incorporato / Impostazioni di fabbrica

Con il comando

set<SPACE><RS485Number>:Reset=1<CR><LF>

Viene inviato al PC interno l'istruzione di eseguire immediatamente un riavvio. Questo riavvio richiede meno di un minuto. Durante questo tempo non è possibile comunicare con il nefoipsometro CHM 15k; allo stesso modo si interrompe l'emissione automatica di telegrammi.

Con il comando

set<SPACE><RS485Number>:ResetSettings=1<CR><LF>

vengono ripristinate le impostazioni di fabbrica per tutti i parametri.

Il comando RSN riavvia la rete. Un riavvio è sempre necessario se le impostazioni di rete come indirizzo IP, modalità DHCP ecc. sono state modificate. Le nuove impostazioni di rete diventano attive solo dopo l'inserimento dei comandi RSN o RST

set<SPACE><RS485Number>:RSN=1<CR><LF>

8.2.5 Modifica delle impostazioni temporali

set<SPACE><RS485Number>:dts=30<CR><LF>

Il tempo di registrazione e report è impostato su 30 secondi. Il tempo di misurazione interno è sempre impostato su un secondo. Il tempo di registrazione e report deve essere un multiplo di un secondo.

Con il comando

set<SPACE><RS485Number>:DateTime=GG.MM.AAAA;hh:mm:ss<CR><LF>

vengono modificate data e ora del PC interno. In questo caso GG = giorno, MM = mese e AAAA = anno, hh = ora , mm = minuti e ss = secondo il fuso orario GMT (Greenwich Mean Time).

Esempio con RS485Number = 16:

set 16:DateTime=13.04.2006;17:22:46<CR><LF>

Imposta la data sul 13.04.2006 e l'ora sulle 17:22:46 GMT.

8.3 Query di dati con RS485

Il nefoipsometro CHM 15k in esercizio opera sempre in una delle modalità di trasferimento indicate nella Tabella 7.

Modalità di trasferimento	Significato
0	I telegrammi di dati vengono inviati solo dietro concreta richiesta
1	Invio automatico del telegramma di dati standard
2	Invio automatico del telegramma di dati esteso
3	Invio automatico del telegramma di dati grezzi
4 9	Invio automatico di ulteriori telegrammi di dati predefiniti

Tabella 7 Panoramica delle modalità di trasferimento disponibili.

È possibile modificare la modalità di trasferimento con il comando "set"

set <RS485Number>:TMO=x

come descritto nella sezione 8.2.2 Definizione di un parametro oppure mediante inserimento diretto nell'interfaccia Web.

Quindi con

set<SPACE>16:TransferMode=1<CR><LF>

per l'apparecchio con numero RS485 "16" viene attivata l'impostazione predefinita valida al momento della consegna (invio automatico del telegramma di dati standard).

8.3.1 Polling

Con il comando

set<SPACE><RS485Number>:TransferMode=0<CR><LF>

viene impostato il polling e con esso un eventualmente precedentemente in esecuzione invio automatico di telegrammi. Con i tre comandi

get<SPACE><RS485Number>:S<CR><LF>

get<SPACE><RS485Number>:L<CR><LF>

get<SPACE><RS485Number>:A<CR><LF>

viene richiamato una volta, rispettivamente, il telegramma di dati standard (S), il telegramma di dati esteso (L) o il telegramma di dati grezzi (A). Per il formato di ciascun telegramma di dati vedere da 8.3.3 Telegramma di dati standard a 8.3.5 (Tabella 8, Tabella 9, Tabella 12).

Ulteriori telegrammi

La piattaforma hardware Nimbus del nefoipsometro CHM 15k (dal 2011) supporta ulteriori telegrammi utente. Oltre alle lettere {S, L, A} sono supportati anche i numeri. Con S = 1, L = 2, A = 3 i primi tre numeri sono predefiniti.

8.3.2 Modalità di invio automatica

Con il comando

set<SPACE><RS485Number>:TransferMode=1<CR><LF>

viene impostato il funzionamento automatico con l'invio di un telegramma standard. La frequenza di ripetizione dipende dalla variabile dt(s) che per impostazione predefinita è impostata su 15 secondi. **Nella** Tabella 8 è disponibile il formato del telegramma di dati standard.

L'invio del telegramma di dati esteso si ottiene con il comando

set<SPACE><RS485Number>:TransferMode=2<CR><LF>

Nella Tabella 9 è disponibile il formato del telegramma di dati esteso.

L'invio del telegramma di dati grezzi si ottiene con il comando seguente:

set<SPACE><RS485Number>:TransferMode=3<CR><LF>

Nella Tabella 12 è disponibile il formato del telegramma di dati grezzi.

Modalità di trasferimento da 4 a 9

Le modalità di trasferimento da 4 a 9 sono ulteriori telegrammi predefiniti.

8.3.3 Telegramma di dati standard

Il telegramma di dati standard consiste di 96 byte. I dati vengono separati da spazi (20 HEX). Nella Tabella 8 viene mostrata la struttura esatta della stringa di caratteri per il formato del messaggio.

Byte	Valore ¹	Descrizione
0	<stx></stx>	20 HEX
1	Х	
2	1	
3, 4	ТА	
5	<space></space>	20 HEX
6	8	
7	<space></space>	20 HEX
8-10	***	Intervallo di invio [s]
11	<space></space>	20 HEX
12-19	** ** **	Data (gg.mm.aa)
20	<space></space>	20 HEX
21-25	** **	Ora (hh:mm)
26	<space></space>	20 HEX
27-31	****	Base della nuvola 1, vedere la sezione 9.3
32	<space></space>	20 HEX
33-37	****	Base della nuvola 2
38	<space></space>	20 HEX
39-43	****	Base della nuvola 3
44	<space></space>	20 HEX
45-48	****	Profondità di penetrazione del fascio laser nel 1° strato nuvoloso, vedere la sezione 9.4
49	<space></space>	20 HEX
50-53	****	Profondità di penetrazione del fascio laser nel 2° strato nuvoloso
54	<space></space>	20 HEX
55-58	****	Profondità di penetrazione del fascio laser nel 3° strato nuvoloso
59	<space></space>	20 HEX
60-64	****	Visibilità verticale, vedere la sezione 9.7
65	<space></space>	20 HEX

Byte	Valore ¹	Descrizione
66-70	****	Distanza di rilevamento massima, vedere la sezione 9.6
71	<space></space>	20 HEX
72-75	+***	Offset altitudine della nuvola (Altitude)
76	<space></space>	20 HEX
77, 78	**	Unità (ft/m), ft o m <space></space>
79	<space></space>	20 HEX
80, 81	**	Sky Condition Index, vedere la sezione 9.11
82	<space></space>	20 HEX
83-90	******	Stato del sistema: codice di stato a 32 bit; vedere la sezione 8.5
91	<space></space>	20 HEX
92, 93	**	Checksum (complemento a due espresso in codice HEX della somma dei byte da 0 a 96 esclusi i byte 92 e 93)
94	<cr></cr>	0D HEX
95	<lf></lf>	0A HEX
96	<eot></eot>	04 HEX

Tabella 8 Formato del telegramma standard; * = numero a piacere.

Nel telegramma standard vengono indicati fino a tre strati nuvolosi. Se vengono rilevati meno di tre strati nuvolosi, nei restanti campi viene visualizzato il messaggio **NODET**. Se non vengono rilevate profondità di penetrazione delle nuvole, nei corrispondenti campi viene visualizzato il messaggio **NODT**. Nei campi viene inserito un valore **NODET** anche se l'algoritmo non è in grado di calcolare i seguenti valori:

- Visibilità
- Distanza di rilevamento massima

Se non è possibile rilevare i valori a causa di un errore dell'apparecchio, in questi campi viene inserito un segno meno "-" oppure una barra "/". Informazioni dettagliate sul tipo di errore dell'apparecchio sono disponibili nei codici di stato (vedere 8.5 Codice di stato).

Correzione dell'altitudine delle nuvole misurata

L'altitudine delle nuvole viene generalmente misurata a partire dalla parte inferiore dell'apparecchio. Se il parametro "altitude(m)" è impostato su un valore diverso da zero e "usealtitude" è impostato su 1, l'altitudine delle nuvole viene corretta di questo fattore. Al posto dell'asse di altezza relativo viene usato un asse di altezza assoluto. Nei file NetCDF la variabile CHO indica se il parametro "usealtitude" è impostato.

8.3.4 Telegramma di dati esteso

Il telegramma di dati esteso consiste di 240 byte, se è selezionato il valore predefinito per il numero di strati nuvolosi rilevati, vedere Tabella 9. Il numero di strati nuvolosi viene indicato nel parametro "Layer (NoL)", vedere Tabella 4. Nel telegramma di dati esteso viene usato un punto e virgola (3B HEX) come separatore al posto dello spazio (20 HEX).

Byte	Valore ¹	Descrizione
0	<stx></stx>	20 HEX
1	Х	
2	1	
3, 4	ТА	
5	;	3B HEX
6	8	
7	;	3B HEX
8-10	***	Intervallo di invio [s]
Byte	Valore ¹	Descrizione
---------	---------------------	--
11	-	3B HEX
12-19	** ** **	Data (gg.mm.aa)
20	-	3B HEX
21-28	**.**.**	Ora (hh:mm:ss)
29	-	3B HEX
30	*	Numero di strati
31	-	3B HEX
32-36	****	Strato nuvoloso 1 (CBH)
37	-	3B HEX
38-42	****	Strato nuvoloso 2 (CBH)
43	;	3B HEX
44-48	****	Strato nuvoloso 3 (CBH)
49	;	3B HEX
50-54	****	Profondità di penetrazione del fascio laser nel 1° strato nuvoloso (CPD), ATTENZIONE: estensione a 5 cifre
55	;	3B HEX
56-60	****	Profondità di penetrazione del fascio laser nel 2° strato nuvoloso (CPD), ATTENZIONE: estensione a 5 cifre
61	;	3B HEX
62-66	****	Profondità di penetrazione del fascio laser nel 3° strato nuvoloso (CPD), ATTENZIONE: estensione a 5 cifre
67	;	3B HEX
68-72	****	Visibilità verticale (VOR)
73	;	3B HEX
74-78	****	Distanza di rilevamento massima (MXD)
79	•	3B HEX
80-83	****	Offset altitudine della nuvola / Altitude (m) o (ft)
84	;	3B HEX
85-86	**	Unità in m oppure ft
87	;	3B HEX
88-89	**	Precipitation Index / Sky Condition Index (SCI)
90	;	3B HEX
91-98	*****	Stato del sistema: codice di stato a 32 bit, vedere 8.5 Codice di stato
99	•	3B HEX
100-101	**	Numero identificativo RS485 per CHM 15k nel sistema bus RS485, errore è 16
102	;	3B HEX
103-111	CHMAAnnnn	Nome dispositivo (AA = anno, nnnn = numero di serie)
112	;	3B HEX
113-117	****	Deviazione standard 1° strato nuvoloso (CBE)
118	-	3B HEX
119-123	****	Deviazione standard 2° strato nuvoloso (CBE)
124	;	3B HEX
125-129	****	Deviazione standard 3° strato nuvoloso (CBE)
130	. ,	3B HEX
131-134	****	Deviazione standard della profondità di penetrazione del fascio laser nel 1° strato nuvoloso (CDE)

Byte	Valore ¹	Descrizione		
135	;	3B HEX		
136-139	****	Deviazione standard della profondità di penetrazione del fascio laser nel 2° strato nuvoloso (CDE)		
140	;	3B HEX		
141-144	****	Deviazione standard della profondità di penetrazione del fascio laser nel 3° strato nuvoloso (CDE)		
145	;	3B HEX		
146-150	****	Deviazione standard della visibilità verticale (VOE)		
151	;	3B HEX		
152-155	****	Versione software FPGA		
156	;	3B HEX		
157-160	****	Versione software per l'elaborazione del segnale OMAP		
161	-	3B HEX		
162-163	**	Stato del sistema: "OK" oppure "ER"		
164	-	3B HEX		
165-168	****	Temperatura esterna (Kelvin x 10)		
169	;	3B HEX		
170-173	****	Temperatura interna (Kelvin x 10)		
174	;	3B HEX		
175-178	****	Temperatura rilevatore (Kelvin x 10)		
179	:	3B HEX		
180-183	****	Tensione di controllo rilevatore (Volt x 10)		
184	:	3B HEX		
185-188	****	Altezza impulso di prova		
189	:	3B HEX		
190-195	*****	Tempo di propagazione del laser (h)		
196	:	3B HEX		
197-199	***	Stato pannello		
200	;	3B HEX		
201-205	****	Frequenza di ripetizione del laser (PRF) (5 cifre)		
206	;	3B HEX		
207-209	***	Stato del ricevitore		
210	:	3B HEX		
211-213	***	Stato della sorgente luminosa		
214	:	3B HEX		
215-219	****	Strato di aerosol 1		
220	:	3B HEX		
221-225	****	Strato di aerosol 2		
226	:	3B HEX		
227	*	Indice di qualità strato di aerosol 1		
228	:	3B HEX		
229	*	Indice di qualità strato di aerosol 2		
230	;	3B HEX		
231	*	BCC: Base Cloud Cover (copertura nuvolosa di base)		
232	:	3B HEX		
233	*	TCC: Total Cloud Cover (copertura nuvolosa totale)		
234	;	3B HEX		

Byte	Valore ¹	Descrizione
235-236	**	Checksum (complemento a due espresso in codice HEX della somma dei byte da 0 a 239 esclusi i byte 235 e 236)
237	<cr></cr>	0D HEX
238	<lf></lf>	0A HEX
239	<eot></eot>	04 HEX

Tabella 9 Formato del telegramma di dati esteso (vedere anche la Tabella 10); * = numero a piacere.

Per le deviazioni standard indicate delle singole grandezze si applicano gli stessi valori di eccezione "NODET/NODT/---" come per le corrispondenti grandezze di base (vedere *8.3.3 Telegramma* di dati standard).

Ulteriori parametri di sistema

I parametri di sistema per la valutazione dei dati, tra cui la profondità di penetrazione, vengono descritti nel capitolo 9 Valutazione dei dati / Sky Condition Algorithm (SCA).

Denominazione	Descrizione
Temperatura esterna	La temperatura esterna misurata sul lato inferiore dell'apparecchio. I valori misurati vengono visualizzati in Kelvin x 10. Tolleranza di errore ± 5 K
Temperatura interna	Temperatura misurata sul sensore: indicazione in Kelvin x 10 Tolleranza di errore ± 2 K
Temperatura del rilevatore	Temperatura misurata sul sensore: indicazione in Kelvin x 10 Tolleranza di errore ± 2 K
NN1	Non assegnato
NN2	Non assegnato
Periodo di funzionamento del laser (h)	Periodo di funzionamento del laser in ore
Stato pannello	Grado di sporcizia del pannello in vetro in percentuale 100 = visibilità chiara , 0 = opaco
Frequenza di ripetizione del laser	Numero di impulsi laser nell'intervallo di misurazione (7 cifre)
Stato del ricevitore	Valutazione dello stato del percorso ottico e del ricevitore 100 = sensibilità massima 0 = nessuna sensibilità residua
Stato della sorgente luminosa	Valutazione della durata di vita e della stabilità della sorgente luminosa Temperatura, stabilità corrente, frequenza di ripetizione; 100% = valore iniziale, ≤ 20% = il laser si spegne

Tabella 10 Denominazioni nel telegramma di dati esteso.

8.3.5 Telegramma di dati grezzi

I dati grezzi vengono inviati nel formato NetCDF (per la descrizione vedere 8.4 Struttura del formato NetCDF). NetCDF è un formato binario. Per una trasmissione tramite RS485 / RS232 è necessaria una conversione in un codice ASCII a 7 bit (intervallo da 21 a 60 HEX) con UUencode, per leggere caratteri speciali come <STX> o <EOT>.

La dimensione del file NetCDF di un set di dati grezzi è di circa 14 kB. La conversione UUencode genera dati ASCII da 20 kB per il trasferimento. A un baudrate di 9600 bit/s il trasferimento dura circa 16 secondi. L'invio automatico del telegramma di dati grezzi è limitato a specifiche combinazioni di intervallo di report e baudrate, come riepilogato nella Tabella 11.

N. baudrate	Baudrate [bit/s]	Intervallo di tempo di registrazione [dt(s)]
0	1200	Non possibile
1	2400	Non possibile
2	4800	≥ 40 s
3	9600	≥ 20 s
4	19200	≥ 10 s
5	38400	≥ 5 s
6	57600	Nessuna ulteriore limitazione
7	115200	Nessuna ulteriore limitazione

Tabella 11 Limitazioni di baudrate dell'intervallo di registrazione.

Nella Tabella 12 viene descritta la struttura de	i dati aggiuntivi del	telegramma	di dati grezzi.
--	-----------------------	------------	-----------------

Byte	Valore ¹	Descrizione
0-238		Esattamente come nel telegramma di dati esteso (per 3 strati nuvolosi)
239	<cr></cr>	0D HEX
240	<lf></lf>	0A HEX
241-(eeee-5)		Dati grezzi in formato ASCII (UUEncode)
eeee-4 eeee-3	**	Checksum (complemento a due espresso in codice HEX della somma dei byte da 0 a eeee, esclusi i byte eeee-4 ed eeee-3)
eeee-2	<cr></cr>	0D HEX
eeee-1	<lf></lf>	0A HEX
eeee	<eot></eot>	04 HEX

Tabella 12 Formato del telegramma di dati grezzi; * = numero a piacere.

Il carattere * rappresenta un carattere ASCII UUencode nell'intervallo HEX 21-60. La "M" (HEX 4D) all'inizio delle righe di dati rappresenta il numero di byte di dati anche con codifica UU in questa riga:

- 4D con decodifica corrisponde al numero HEX 2D = 45 decimale.

Questi 45 byte vengono codificati conformemente alla conversione UUencode 4/3 in 60 ($60 = 45/3 \times 4$) caratteri ASCII che seguono la "M". Un'eccezione è rappresentata dall'ultima riga, dove vengono codificati gli ultimi byte che in genere sono meno di 45.

Nell'esempio fornito sopra si legge la lettera "E" (HEX 45, con decodifica HEX 25 = 37 decimale), quindi seguono altri 37 byte di dati grezzi i quali, tuttavia, dopo la codifica 4/3 (con arrotondamento a un multiplo di 4 caratteri) diventano 52 caratteri ASCII ($52 = (37/3 \text{ arrotondato}) \times 4$). L'ultima riga con "end" indica la fine dei dati UUencode.

Esempio del nome di file presente nella riga 1:

AAAAMMGGhhmmss_ [Luogo]_[IDdispositivo].nc

è, ad esempio, 20060331123730_Berlino_CHM060003.nc (vedere anche 8.4.3) Significa:

- apparecchio CHM060003 a Berlino, dati del 31/03/2006, ore 12:37:30.

8.3.6 Ulteriori telegrammi di dati

La struttura dei telegrammi di dati è definita in un file "telegram.xml". Tale file può essere scaricato in modalità Superuser tramite l'interfaccia Web, modificato e caricato nuovamente in modalità utente Service.

Nel firmware sono già predefiniti alcuni telegrammi utente:

- Telegramma 4: telegramma 2 + stato della ventola e del riscaldamento e gli 8 campi del commento (da COM a CM7). La lunghezza del telegramma adesso è variabile e i commenti occupano solo lo spazio corrispondente alla loro lunghezza.
- Telegramma 5: telegramma 1 + diversa visualizzazione di "altitude(m)" + stato della ventola e del riscaldamento
- Telegramma 8: telegramma di dati 1 CT25k di Vaisala
- Telegramma 9: telegramma di dati 6 CT25k di Vaisala

Per i telegrammi utente predefiniti è disponibile una descrizione speciale. Questi telegrammi possono cambiare.

8.4 Struttura del formato NetCDF

8.4.1 Informazioni generali

Il nefoipsometro salva tutti i profili di retrodiffusione misurati in un file giornaliero con formato NetCDF (Network Common Data File). La capacità di archiviazione della scheda SD interna da 8 GB consente di conservare file per circa un anno. L'accesso ai file è consentito da un'interfaccia Web (connessione LAN). In un caso di servizio "Comunicazione interrotta" è possibile consultare e risalire ai dati interessati. Inoltre è possibile richiamare i dati grezzi di una singola misurazione come telegramma di dati grezzi tramite l'interfaccia RS485 o l'interfaccia LAN. L'operazione non include la trasmissione di più di una singola misurazione tramite RS485, perché questo influenzerebbe negativamente la sequenza temporale in questa modalità. Poiché la velocità di trasmissione dipende dalla risoluzione temporale dei dati di misurazione e dalle impostazioni dell'interfaccia RS485, questo trasferimento richiederebbe troppo tempo. La dimensione di un file NetCDF di un giorno con intervalli di misurazione dt(s)=30s è circa 12 MB. Passando alla risoluzione temporale di 15s vengono generati file giornalieri con dimensione pari a 24 MB. Per l'interfaccia LAN è possibile un accesso diretto ai file giornalieri, a file di 5 minuti (Modalità AFD (FTP)) e a singoli file a richiesta.

8.4.2 Principi di base

NetCDF offre un'interfaccia indipendente da piattaforma per archiviare e leggere dati scientifici. È stata sviluppata da Unidata, un progetto promosso dalla National Science Foundation (<u>http://www.unidata.ucar.edu</u>). Ogni set di dati contiene spiegazioni sul contenuto archiviato.

Il nefoipsometro archivia tutti i dati di un giorno in un file o, nel caso della modalità FTP, in file di 5 minuti. Per l'ora viene usato il sistema UTC. Nella modalità standard (RS485) il nefoipsometro CHM 15k trasferisce un telegramma di dati grezzi con un singolo profilo di retrodiffusione e tutte le variabili e gli attributi descrittivi nel formato NetCDF. I telegrammi di dati grezzi di un giorno possono essere riuniti in un file giornaliero.

8.4.3 Nomi di file

File giornaliero:	AAAAMMGG_[Luogo]_[IDdispositivo]_[Indice].nc
Dati grezzi nel telegramma RS485:	AAAAMMGGhhmmss_[Luogo]_[IDdispositivo].nc
Dati grezzi con risoluzione temporale di 5 minuti per modalità FTP (AFD)	AAAAMMGGhhmmss_[Luogo]_[IDdispositivo]_hhmm_Indice.nc

Lunghezze dei nomi di file

Per trasmissioni di file senza problemi è necessario mantenere gli standard ISO nella loro forma estesa, ovvero la lunghezza del nome di file non deve essere superiore a 31 caratteri. Per la struttura dei file giornalieri con [Data]_[Luogo]_[identificativoApparecchio]_[Indice].nc (8_5_9_3.2=31 caratteri) significa che il nome del luogo non può superare i 5 caratteri.

8.4.4 Struttura del formato

Nel formato NetCDF i valori da archiviare vengono definiti e archiviati per dimensioni, variabili e attributi. Dalla Tabella 13 alla Tabella 15 vengono descritte le denominazioni utilizzate.

Dimensioni

Dimensione	Descrizione	Predefinito
time	Numero dei profili di retrodiffusione misurati all'interno di un file NetCDF	ILLIMITATO
range	Numero dei punti misurati e archiviati in profili di retrodiffusione nel formato NetCDF con una risoluzione di 5 30 m in base all'impostazione, valore predefinito 15 m.	534
range_hr	Numero dei punti salvati nel profilo di retrodiffusione NetCDF ad alta risoluzione con una risoluzione di 5 m	32
layer	Numero degli strati nuvolosi, trasmesso in telegrammi e archiviato in file NetCDF	3

Tabella 13 Dimensioni nel file NetCDF.

Attributi globali

Attributo	Descrizione	Тіро
title	Intestazione della rappresentazione grafica, ad esempio "Lufft Berlino, CHM 15k".	Text
source	Vedere il nome dispositivo (incluso per motivi di compatibilità)	Text
device_name	Numero di serie, nome dispositivo dell'apparecchio	Text
serlom	Numero di serie dell'unità di misurazione, ad esempio TUB190001	Text
day	Giorno del mese in cui sono stati misurati i dati.	int
month	Mese in cifra, gennaio = 1,	int
year	Anno in cui sono stati rilevati i dati, ad esempio 2019	int

location*	Luogo della misurazione		
institution*	Istituto o ditta	Text	
wmo_id*	ID stazioni WMO	int	
software_version	Kernel Linux, software FPGA, firmware	Text	
comment*	Commento descrittivo	Text	
overlap_file	Nome / Ora della funzione di correzione della sovrapposizione per generare le variabili beta	Text	

Tabella 14 Attributi globali nel file NetCDF; *Impostazioni definite dall'utente.

Variabili

Variabile	Тіро	Dim.	Unità	Denominazione	Scala
time	double	time	seconds since 1904-01-01 00:00:00.000 00:00	Punto finale della misurazione (UTC)	
range	float	range	m	Distanza di misurazione dell'apparecchio (indipendente da direzione e altezza del luogo di installazione)	
range_hr	float	range_h r	m	Distanza di misurazione dell'apparecchio per alta risoluzione	
layer	int	layer		Indice degli strati (Layer)	
latitude	float		degrees_north	Grado di latitudine del luogo di installazione	
longitude	float		degree	Grado di longitudine del luogo di installazione	
azimuth	float		degree	Angolo azimutale dell'apparecchio (direzione dell'indicatore del laser)	
zenith	float		degree	Angolo zenitale dell'apparecchio (direzione dell'indicatore del laser)	
altitude	float		m	Altezza di installazione dell'apparecchio sul livello del mare	
wavelength	float		nm	Lunghezza d'onda del laser in nm	
average_time	int	time	ms	Tempo medio per registrazione	
range_gate	float		m	Risoluzione spaziale della misurazione	
range_gate_hr	float		m	Risoluzione spaziale della misurazione ad alta risoluzione	
life_time	int	time	h	Tempo di propagazione del laser	
error_ext	int	time		Codice di stato a 32 bit	
state_laser	byte	time	percent	Indice di qualità del laser	
state_detector	byte	time	percent	Qualità del rilevatore di segnale	
state_optics	byte	time	percent	Indice di qualità ottica	
temp_int	short	time	К	Temperatura interna dell'involucro	0,1
temp_ext	short	time	K	Temperatura esterna dell'involucro	0,1
temp_det	short	time	К	Temperatura del rilevatore	0,1
temp_lom	short	time	К	Temperatura dell'unità di misurazione	0,1

Variabili

Variabile	/ariabile Tipo Dim. Unità Denominazione				Scala		
laser_pulses	int	time		Numero di impulsi laser emessi di una misurazione (lp)			
p_calc	short	time	counts	Impulso di calibrazione (normalizzazione dell'unità di misurazione nel tempo)	0,00001		
scaling	float			Fattore di scalatura (normalizzazione delle unità di misurazione tra loro) (cs)			
base	float	time	counts	Altezza della linea di base del segnale grezzo (influenzata principalmente dalla luce diurna) (b)			
stddev	tddev float time counts Deviazione standard del segnale grezzo						
beta_raw	float	time range		Segnale di retrodiffusione normalizzato, corretto in base all'intervallo ((P_raw / lp) - b) / (cs * o(r) * p_calc) * r * r, con P_raw = sum(P_raw_hr) * range_gate_hr / range_gate			
beta_raw_hr	float	time range_h r		Segnale di retrodiffusione ad alta risoluzione, normalizzato, corretto in base all'intervallo ((P_raw_hr / lp) - b) / (cs * o(r) * p_calc) * r * r			
pbl	short	time layer	m	Strati di aerosol			
pbs	byte	time layer		Indice di qualità per strati di aerosol (1: buono, 9: cattivo)			
tcc	byte	time		Grado di copertura (complessivo)			
bcc	byte	time		Grado di copertura dello strato nuvoloso inferiore			
sci	byte	time		Sky Condition Index (0: nessuna precipitazione, 1: pioggia, 2: nebbia, 3: neve, 4: precipitazioni o particelle sul pannello della finestra)			
vor	short	time	m	Visibilità verticale			
voe	short	time	m	Opacità della visibilità verticale rilevata			
mxd	short	time	m	Distanza di rilevamento massima			
cbh	short	time layer	m	Altezza della base della nuvola			
cbe	short	time layer	m	Sfocatura della base della nuvola calcolata			
cdp	short	time layer	m	Profondità di penetrazione nella nuvola			
cde	short	time layer	m	Sfocatura della profondità di penetrazione della nuvola calcolata			
cho	short		m	Offset dell'altezza (calcolato in cbh, mxd, vor e pbl;			

Variabile Tipo Dim. Ur		Unità	Denominazione	Scala	
				corrisponde all'altitudine quando usealtitude=1, altrimenti 0)	
nn1	short	time		nn1	
nn2	short	time		nn2	
nn3	short	time		nn3	

Variabili

Tabella 15 Variabili nel file NetCDF.

8.5 Codice di statos

Ci sono due diverse varianti dei codici di stato, ciascuna delle quali riflette lo stato dell'apparecchio con un numero a 32 bit. Nella Tabella 16 sono elencati i significati dei singoli bit del codice di stato noti dal nefoipsometro CHM 15k. Queste varianti dei codici di stato vengono visualizzate nell'interfaccia Web e nel file NetCDF. Per l'output nei telegrammi di dati, ad esempio i numeri da 83 a 90 nel telegramma standard o i numeri da 91 a 98 nel telegramma di dati esteso (vedere la Tabella 8 e la Tabella 9), è anche disponibile a scelta un codice di stato aggiornato, vedere la sezione 8.5.1.

I codici di stato vengono rappresentati come numeri esadecimali a 8 cifre. I bit non impostati significano che la parte corrispondente funziona correttamente. I bit impostati indicano errori, avvisi, informazioni oppure inizializzazioni ancora in corso, ad esempio poco dopo l'accensione.

Bit	Hex	Тіро	Errore			
0	0000001	Errore	Errore: Qualità del segnale			
1	0000002	Errore	Errore: Registrazione del segnale			
2	0000004	Errore	Errore: Valore del segnale zero o non valido			
3	0000008	D000008ErroreErrore: Determinazione della versione della scheda madre non riuscita (APD-Bias)				
4	00000010	Errore	Errore: Nuovo file NetCDF creato			
5	0000020	Errore	Errore: Scrittura/Aggiunta al file NetCDF			
6	00000040	Errore	Errore: Impossibile generare o trasmettere il telegramma RS485			
7	00000080	Errore	Errore: Scheda SD mancante o difettosa			
8	00000100	Errore	Errore: Controllo della tensione del rilevatore non riuscito / Cavo difettoso o non disponibile			
9	00000200	Avvertimento	Avvertimento: Temperatura dell'involucro interno fuori intervallo			
10	00000400	Errore	Errore: Errore di temperatura dell'unità di misurazione			
11	00000800	Errore	Errore: Emissione del laser non riconosciuta o laser disattivato per motivi di sicurezza			
12	00001000	Errore	Errore: Firmware non adatto alla versione della CPU			
13	00002000	Errore	Errore: Controller del laser			
14	00004000	Errore	Errore: Temperatura della testa laser			
15	0008000	Avvertimento	Avvertimento: Sostituzione del laser – Invecchiamento			
16	00010000	Avvertimento	Avvertimento: Qualità del segnale - Livello di rumore elevato			
17	00020000	Avvertimento	Avvertimento: vetro sporco			

Bit	Hex	Тіро	Errore
18	00040000	Avvertimento	Avvertimento: Elaborazione del segnale
19	00080000	Avvertimento	Avvertimento: Erroneo orientamento del rilevatore laser o finestra di ricezione sporca
20	00100000	Avvertimento	Avvertimento: File system, fsck ha riparato settori corrotti
21	00200000	Avvertimento	Avvertimento: Ripristino del baudrate / della modalità di trasferimento RS485
22	00400000	Avvertimento	Avvertimento: Problema di AFD
23	0080000	Avvertimento	Avvertimento: Problema di configurazione
24	01000000	Avvertimento	Avvertimento: Temperatura dell'unità di misurazione
25	02000000	Avvertimento	Avvertimento: Temperatura esterna
26	0400000	Avvertimento	Temperatura del rilevatore fuori intervallo
27	08000000	Avvertimento	Avvertimento: Problema generico dell'emissione laser
28	1000000	Avviso	Avviso: NOL>3 e telegramma standard selezionati
29	20000000	Avviso	Avviso: L'apparecchio è stato riavviato
30	4000000	Avviso	Avviso: Modalità standby attiva

Tabella 16 Codici di stato / Bit di stato.

I bit non usati finora vengono generalmente impostati su 0, quindi il codice di stato esadecimale 0 indica la completa disponibilità operativa del nefoipsometro CHM 15k.

8.5.1 Codici di stato aggiornati

Nel 2018 è stato implementato un codice di stato aggiuntivo. Tale codice si suddivide nei seguenti 8 gruppi:

- 1. Configurazione
- 2. Trasferimento dati e archiviazione
- 3. Temperature
- 4. Calcolo / Elaborazione nell'algoritmo Sky Condition
- 5. Laser e impulsi di prova LED
- 6. Rilevatore (ricevitore)
- 7. Sensore di sporcizia della finestra
- 8. Non disponibile

Ogni gruppo è assegnato a una posizione nella rappresentazione Hex del codice di stato a 32 bit. Ad esempio le informazioni, gli avvisi e gli errori relativi alle temperature (gruppo 3) occupano la terza posizione da destra, quindi xxxxTxx.

In ogni gruppo viene visualizzato solo l'errore con la massima priorità, il codice di errore più elevato nel codice di stato.

Con l'impostazione SystemStatusMode (SSM) è possibile definire quale variante del codice di stato dovrà essere usata per l'invio di telegrammi. Il nefoipsometro CHM 15k utilizza i codici di stato standard come impostazione di fabbrica.

Nella Tabella 16 vengono descritti i significati e la durata dei singoli codici di stato.

Grupp o	Codice Hex	Denominazione dell'errore	Durata [s]
1	Configurazio	ne	

Grupp o	Codice Hex	Denominazione dell'errore	Durata [s]
	xxxx xxx0	Configurazione corretta	
	xxxx xxx1	Riavvio dopo la riattivazione o riavvio del firmware (SW)	60
	xxxx xxx2	Riavvio dopo la disattivazione	60
	xxxx xxx3	Riavvio dopo il rilascio del watchdog (FW)	60
	xxxx xxx4	Riavvio (ad esempio, dopo un'interruzione di corrente)	60
	xxxx xxx5	Apparecchio in standby	eliminare*
	xxxx xxx6	Parametro non valido, viene usata la configurazione precedente o corretta	300
	xxxx xxx7	Formato sconosciuto identificatore NetCDF nel file delle impostazioni	60
	xxxx xxx8	Numero di strati eccessivo per il telegramma 1	60
	xxxx xxx9	Dimensioni non corrispondenti	~
	xxxx xxxA	Nessun file di sovrapposizione valido trovato	∞
	xxxx xxxB	EEPROM difettoso / non presente o cavo difettoso	16
	xxxx xxxC	Impossibile leggere l'identificatore della scheda madre	∞
	xxxx xxxD	Firmware non adatto alla versione della CPU	×
2	Trasferiment	o dati e archiviazione	-
	xxxx xx0x	Le funzioni di trasferimento dati e archiviazione funzionano senza problemi	
	xxxx xx1x	File system FAT difettoso sulla scheda SD riparato	60
	xxxx xx2x	Ripristino del baudrate / della modalità di trasferimento RS485 eseguito	60
	хххх хх3х	Problema di AFD	60/600
	xxxx xx4x	Impossibile trasmettere il telegramma RS485	16
	xxxx xx5x	Impossibile generare il telegramma RS485	16
	хххх хх6х	Errore di scrittura nel file NetCDF	60
	xxxx xx7x	Impossibile creare il nuovo file NetCDF	60
	xxxx xx8x	Scheda SD non disponibile o difettosa	∞
3	Temperature		
	xxxx x0xx	Le temperature sono corrette	
	xxxx x1xx	Temperatura del rilevatore al di fuori dell'intervallo operativo ottimale (valore nominale tra -1 °C e +3 °C)	60
	хххх хЗхх	Temperatura dell'unità di misurazione al di fuori dell'intervallo valido (25 °C 49 °C)	60
	xxxx x4xx	Temperatura interna al di fuori dell'intervallo valido (5 °C 50°C)	16
	xxxx x5xx	Temperatura esterna al di fuori dell'intervallo valido (-35 °C 50 °C)	60

Grupp o	Codice Hex	Denominazione dell'errore	Durata [s]
	хххх х6хх	Controllo della temperatura dell'unità di misurazione disattivato per motivi di sicurezza	16 / ∞
	xxxx x7xx	Temperatura del controller del laser troppo alta	60
	xxxx x8xx	Temperatura della testa laser troppo alta o troppo bassa	16
	xxxx x9xx	Temperatura dell'unità di misurazione troppo alta	16
	xxxx xAxx	Temperatura del laser al di fuori dell'intervallo operativo o non valida	eliminare*
4	Calcolo / Elal	borazione nell'algoritmo Sky Condition	1
	xxxx 0xxx	Elaborazione corretta	
	xxxx 1xxx	Problema con il calcolo della visibilità	16 / 60
	xxxx 2xxx	Problema con il calcolo degli strati di aerosol	60
	хххх Зххх	Problema con il calcolo del grado di copertura	60
	xxxx 4xxx	Problema con il calcolo delle nuvole	60
	xxxx 5xxx	Segnale insolito	60
	xxxx 6xxx	Errato dimensionamento dei dati grezzi	16
	xxxx 7xxx	Nessun nuovo dato	16
5	Laser e impu	lsi di prova LED	
	xxx0 xxxx	Il laser e gli impulsi di prova LED funzionano normalmente	
	xxx1 xxxx	Problema generico del laser	60
	xxx2 xxxx	Impulsi di prova LED minori o uguali a zero	16
	xxx3 xxxx	Sostituzione del laser (invecchiamento)	60
	xxx4 xxxx	Errore: Controller del laser	16
	xxx5 xxxx	Errore: Emissione del laser non rilevata	16
	ххх6 хххх	Laser disattivato (per motivi di sicurezza correlati al laser)	16 / ∞
6	Rilevatore (ri	cevitore)	
	xx0x xxxx	Il rilevatore funziona normalmente	
	xx1x xxxx	Qualità del segnale – Impulso di riferimento più basso	16
	xx2x xxxx	Ricevitore orientato in modo errato o finestra sporca	60
	xx6x xxxx	Valori dal segnale del rilevatore pari a zero o nulli	16
	xx7x xxxx	Nessun segnale laser di prova sufficiente presente	16
	xx8x xxxx	Nessun impulso della finestra nel segnale del ricevitore	16
	xxDx xxxx	Nessun segnale del ricevitore (difetto del rilevatore o dell'alimentazione ad alta tensione?)	16
	xxEx xxxx	Nessun segnale del ricevitore (cavo di alimentazione?)	16
	xxFx xxxx	Nessun segnale del ricevitore (cavo del segnale?)	16

Grupp o	Codice Hex	Denominazione dell'errore	Durata [s]			
7	Sensore di sporcizia della finestra					
	x0xx xxxx	Finestra pulita				
	x1xx xxxx	Finestra sporca	60			

Tabella 17 Codici di stato aggiornati (HW: hardware, SW: software, FW: firmware); eliminare*: l'errore viene visualizzato fino a quando non viene risolta la condizione di errore.

Significato dei	colori:		
Tutto regolare			
	Informazione		
	Avvertimento		
	Errore		

8.6 Aggiornamento del firmware

Il software di sistema del nefoipsometro CHM 15k può essere aggiornato mediante un'interfaccia Ethernet (connessione WAN / LAN). Per i dettagli, consultare la sezione seguente *8.7 Comunicazione via interfaccia* Web Ethernet. Un aggiornamento del software richiede una password da Superuser.

8.7 Comunicazione via interfaccia Web Ethernet

8.7.1 Panoramica dell'apparecchio e diritti di accesso (scheda Device (Dispositivo))

ce Viewer	NetCDF File	es Config System	Config Network	Config RS485	Process Warnings	?	
Status				Status info			
Serial Dev	ice C	CHM15kd01					
Serial Opti	ics T	UB080022					
Location	E	Berlin					
System Ti	me (UTC) T	ue Jul 16 14:54:42 2019					
Hardware	C N C	CHM 15k (8350): 000 Mainboard (8350.MCB): CPU board (8350.MCP): MAC: EC:98:6C:0C:00:12	612 552 2				
Firmware	1 c	.017 (Jun 3 2019 10:52 / hm-art v02.13 2012-01-2)S: 17.05.1	4.6.3) 7	Administration			Enducor
Overlap Fi	le T (i	UB080022 2018-02-12 14:44:32)		Code:		<u>1ate</u>	End-user
Laser Life	Time 6	0613.0					
External Te	emperature 2	20.4					
Internal Te	mperature 2	8.9					
Last Sess	ion 1	0.130.65.142 07/16/19 0	6:56:3				
System St	atus O	0000000					
			update				

Figura 16 Interfaccia Web

Nella Figura 16 viene mostrata la schermata iniziale (scheda "Device" (Dispositivo)) dopo una connessione eseguita correttamente all'apparecchio (per la messa in funzione vedere la sezione 7.2). Questa schermata mostra informazioni sullo stato corrente dell'apparecchio. È possibile eseguire l'accesso come Superuser o utente Service.

La comunicazione con il nefoipsometro CHM 15k tramite una connessione Ethernet è veloce, sicura e indipendente dal sistema. All'interno dell'apparecchio è in esecuzione un server Web Apache. Questo mette a disposizione una piattaforma di comunicazione e di configurazione tramite l'interfaccia Web per l'elaborazione di aggiornamenti del firmware, la visualizzazione di veloci anteprime dei risultati delle misurazioni o per scaricare dati grezzi NetCDF relativi all'intera giornata

In genere l'interfaccia Web include i seguenti diritti di accesso:

- Gli utenti finali ("end user") possono verificare lo stato dello strumento.
- I superutenti ("superuser") possono anche scaricare file NetCDF, configurare l'apparecchio, scaricare le istruzioni per l'uso correnti e altri file di configurazione.
- Gli utenti del servizio ("service user") possono aggiornare il firmware, impostare il numero di serie dell'apparecchio, scaricare il manuale di manutenzione corrente e caricare file di configurazione.

Le informazioni di stato nell'elenco degli apparecchi e nell'elenco degli avvisi di processo mostrano avvertimenti e aggiornamenti degli errori ogni minuto. I codici elencati delle informazioni di stato corrispondono ai codici di stato nella Tabella 16. La scheda degli avvisi di processo (Figura 24) contiene ulteriori informazioni per il personale dell'assistenza.

Nella modalità Superuser o utente Service la pagina iniziale contiene pulsanti per disattivare o avviare l'apparecchio.

8.7.2 Accesso ai dati di misurazione (schede NetCDF Files (File NetCDF) e Viewer (Visualizzatore))

Nella Figura 17 viene mostrata la scheda dei file NetCDF visibili a tutti gli utenti. Nella modalità Superuser o utente Service questi file NetCDF possono essere scaricati con un doppio clic.

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	⊠Lufft
Count:	169			Upda	ate List			
File Na	me			Size [k	3]			
201907	716_Berlin_	CHM15kd01_000.n	ic	15349				
201907	715_Berlin_	CHM15kd01_003.n	ic	8890				

Figura 17 Interfaccia Web: scheda NetCDF Files (File NetCDF) (Superuser).

Nella Figura 18 viene mostrato il contenuto della scheda "Viewer" (Visualizzatore) con la rappresentazione dei dati disponibili delle ultime 24 ore con intervalli di 5 minuti. Facendo clic sul pulsante "Update" (Aggiorna) il file dell'immagine viene aggiornato, tuttavia questo può avvenire sempre a intervalli di 5 minuti. Il parametro "BackscatterMax" (Retrodiffusione max.) nella scheda "Config System" (Config. sistema) (vedere la Figura 21) può essere modificato per adeguare facilmente la scala di colore. L'ultima misurazione delle nuvole viene aggiornata con l'intervallo di report dt(s) e rappresentata più in alto.

Figura 18 Interfaccia Web: scheda Viewer (Visualizzatore).

8.7.3 Configurazione del nefoipsometro CHM 15k (schede Config)

I contenuti delle schede di configurazione ("Config System" (Config. sistema), "Config Network" (Config. rete) e "Config RS485" (Config. RS485) sono accessibili solo ai superutenti e agli utenti del servizio. I parametri possono essere impostati anche tramite comunicazione RS485 e vengono descritti in 8.1 Elenco dei parametri configurabili.

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	a Line Line Line Line Line Line Line Line
Ne	twork Inform	nation						
Na	ime			Address		Netma	sk	
eth	n0:2 (dhcp)			10.130.65.15	2	255.25	5.255.0	
eth	n0:1 (custom)		10.130.65.12	0	255.25	5.255.0	
eth	n0 (fix)			192.168.100.	101	255.25	5.255.0	
ga	teways		10.1	30.65.2, 10.130.65.	2			
ntp	server		192	.53.103.104				
								update

Figura 19 Interfaccia Web: configurazione di rete (sola lettura, modalità predefinita) per un apparecchio con IP statico configurato (eth0:1 custom).

Manuale di istruzioni di CHM 15k

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?		S Lufft
N	etwork Informa	tion							
N	ame			Address		Netmask			
et	th0:2 (dhcp)								
et	th0:1 (custom)			10.130.65.120		255.255.25	55.0		
et	th0 (fix)			192.168.100.10	1	255.255.25	55.0		
ga	ateways			10.130.65.2					
nt	tp server			192.53.103.1	104				
								update	
N	letwork Config	ration							
			0						
D	ncpillode		0					set	
IF	PAddress		10.130.65	.120				set	
N	letmask		255.255.2	55.0				set	
0	atoway.		10 120 65	2				ant	
G	sateway		10.130.65	.2				set	
D	InsServer							set	
								restart network	
N	ItpMode		1					set	
N	ItpServer		192.53.10	3.104				set	
L	.anTelegramNur	nber	2					set	
ь	anTransferMod	e	1					set	
L	anPort		11000					set	
н	IttpPort		80					set	
A 1	FD Configuratio	on							
	AfdMode	1					set		
D	ownload AFD di	ir config							
	Prowso	dir_config:	Cond						
	browse	to file selected.	sena						

Figura 20 Interfaccia Web: configurazione di rete (modalità Service).

Nella Figura 19 viene mostrata la scheda di registro "Config Network" (Config. rete) di un apparecchio con IP statico nella visualizzazione utente predefinita. Nella sezione Network Configuration (Configurazione di rete) (Figura 20) della visualizzazione Superuser/utente Service è possibile modificare l'indirizzo IP statico (eth0: 1 definito dall'utente), la maschera di rete (Netmask) e il gateway per adeguarli alle condizioni di rete locali. Per salvare le impostazioni nei file di configurazione di rete e usare le nuove impostazioni, è necessario riavviare la rete. Per eseguire il riavvio è possibile fare clic sul pulsante "Restart network" (Riavvia rete).

Prima di attivare la modalità AFD (FTP), è necessario installare con attenzione il file di configurazione AFD. Vedere 8.8 MODALITÀ AFD per ulteriori informazioni.

Nella Figura 21 viene mostrato il contenuto della scheda di registro "Config System" (Config. Sistema) che consente di accedere a parti del sistema:

Device Viewer NetCDF Files	Config System Config Ne	twork Config RS485 Process Warnings	?	Lufft
Parameter	current Value	new Value		
Location	Berlin		set	
Institution	NN		set	
WMOStationCode	0		set	
Comment			set	
Longitude	0		set	
Latitude	0		set	
Zenith	0		set	
Azimuth	0		set	
Altitude	0		set	
UseAltitude	0		set	
LoggingTime	15		set	
Unit	0		set	
Layer	3		set	
TimeZoneOffsetHours	0		set	
BlowerMode	0		set	
RangeResolution	3		set	
RangeStart	5		set	
RangeEnd	10000		set	
RangeHrDim	32		set	
UAPD	170000		set	
ApdControlMode	1		set	
TestMode	0		set	
Standby	0		set	
CloudDetectionMode	0		set	
BackscatterMax	4000000		set	

Figura 21 Interfaccia Web: parte superiore della schermata di configurazione del sistema (modalità Service).

La compilazione dei campi relativi a luogo, istituto, longitudine e latitudine è sempre molto utile per cercare dati e confrontarli con altri strumenti e quando è necessaria l'assistenza di Lufft per identificare problemi.

Per motivi di sicurezza alcuni parametri non vengono qui elencati nella modalità Superuser. Più in basso nella stessa schermata è possibile caricare aggiornamenti del firmware in modalità Superuser nell'apparecchio (Figura 22). I nuovi file del firmware vengono compressi in file Zip di backup e devono essere caricati in questo formato. Le nuove versioni del firmware vengono pubblicate nel sito Web di Lufft. Un elenco delle versioni rilasciate finora è disponibile nella sezione 11.2 di questo manuale.

UTC Time [Format: MMDDHHmmYYYY (i.E. 061013162010 for Jun 10 13:16:00 2010)]	set
Download current settings	
Determine Reference Values	
Change Superuser password	
Reset settings to factory defaults	
Format SD card	
Update firmware: You need a version for CPU 552, e.g. 'chm_0_734_552.zip'. Browse No file selected. send	

Figura 22 Interfaccia Web: parte inferiore della schermata di configurazione del sistema (modalità Service).

Nella Figura 23 viene mostrata la scheda "Config RS485" (Config. RS485). Per motivi di sicurezza manca la funzione di caricamento per nuovi formati di telegramma. Se si desidera installare telegrammi propri, contattare la ditta Lufft.

Paramotor	current Value	now Value	
ranameter	current value	new value	
RS485Number	16		set
Baud	3		set
BaudAfterError	3		set
Fransfermode	1		set
FransfermodeAfterError	1		set
gnorChars	06		set
MaxCrossTalkChars	5		set
līmeOutRS485(s)	30		set

Figura 23 Interfaccia Web: configurazione RS485 (modalità Service).

8.7.4 Messaggi di stato e di errore (scheda Process Warnings (Avvisi di processo))

La parte superiore della scheda di registro "Process Warnings" (Avvisi di processo) nella Figura 24 viene utilizzata principalmente dall'assistenza di Lufft per identificare problemi ed errori speciali.

Nella sezione inferiore vengono mostrate informazioni sulla modalità avanzata di distribuzione dei file (Automatic File Distribution, AFD). In modalità AFD attiva viene visualizzato lo stato dei file trasmessi. È possibile rilevare l'impostazione corretta o errori che si sono verificati durante la configurazione con il file di configurazione AFD. La sezione AFD-Status (Stato AFD) è visualizzabile solo con la modalità AFD attiva.

Devi	ce Viewer N	letCDF Files	Config System	Cor	nfig Network	Config RS485	Process Wa	rnings ?	12 23	Eufft
	Process Warnings Detected as Error	B Detected	as Warning	Code	Description	Occured (Err	or/Warning)	Last Detected	ext. Param	
	no enois delecied								<u>update</u>	
	AFD Status									
	Transferred Files				15					
	Transferred File Si	ze			1461	1780				
	Files in Queue				0					
	File Size in Queue				0					
	Number of Connec	tions			5					
	Time of last Conne	ction			Wed	Sep 12 13:30:01	2018			
	Time of last Retry				Wed	Sep 12 12:10:25	2018			
	AFD Space Used (%)			23					
	Errors									
	Total Errors				0					
	Error Counter				0					
	Error History				000	-> Transfer succes -> Transfer succes	3S 3S			

Figura 24 Interfaccia Web: avvisi di processo e registro degli errori. Lo stato AFD non è visibile se è impostata la modalità AFD 1.

8.7.5 Time server

La compensazione automatica dell'ora con un time server (server NTP) viene eseguita solo se il parametro *NtpMode* è impostato su 1 ed è impostato un time server valido (*NtpServer*).

I file di configurazione di ntpd.conf vengono elencati nel time server. Il server preconfigurato è: 0.0.0.0.0.0 (nessun time server) e la modalità Time server NTPMode è disattivata.

Esempio: ptbtime1ptb.de, indirizzo IP 192.53.103.108.

L'utilizzo di questo indirizzo IP è consigliato, è necessario impostare un indirizzo server DNS valido prima di poter usare l'indirizzo del server. Se il sistema ha rilevato un time server, verrà immediatamente utilizzato.

Nota bene:

L'utente dovrebbe evitare le impostazioni automatiche dell'ora tramite il comando di data/ora (RS485) con contemporanea esecuzione di ntpd tramite TCP/IP.

8.8 MODALITÀ AFD Modus

La modalità AFD ("Automatic File Distribution", modalità avanzata di distribuzione dei file) è supportata a partire dal firmware 0.52.

Viene usata per l'invio automatico di dati misurati in formato NetCDF a un server FTP e richiede un'interfaccia Ethernet.

La modalità AFD può essere attivata dall'interfaccia Web (Figura 20) nella modalità Superuser. È necessario scaricare, configurare e caricare nuovamente il file di configurazione "afdsettings" per soddisfare le richieste locali.

Per impostazione predefinita AFD trasferisce ogni 15 minuti tre file NetCDF da 5 minuti. L'utente può unire i file NetCDF in file di 24 ore.

II file di configurazione "afdsettings.text" viene mostrato qui di seguito. Il nome file ufficiale è: "DIR_CONFIG". Ulteriori informazioni sui comandi qui elencati sono disponibili nella <u>pagina Web di DWD</u> <u>dedicata ad AFD</u>. I cancelletti (#) vengono usati per aggiungere commenti ai comandi.

File di configurazione "afdsettings.txt":

[directory] /tmp/afd/netcdf/afd-src

[dir options] delete unknown files 0 delete queued files 6

[files]

[destination]

[recipient] ftp://user:password@host_ip/path/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600 exec -d bzip2 %s

#

Importante durante l'elaborazione del file di configurazione:

Il formato completo (righe vuote e profondità di rientro) del file afdsettings è importante. Se viene scaricato il file di esempio del nefoipsometro, le singole impostazioni devono essere sostituite passo-passo con attenzione. # viene usato per contrassegnare un commento

Esempio di un file "afdsetting.txt": Server FTP 192.168.1.51 Sottodirectory nel server (dalla directory radice): /home/chm_data Nome utente: afd Password: eXample

[recipient] ftp://afd:eXample@192.168.1.51//home/chm_data/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600 exec -d bzip2 %s

Ogni 15 minuti vengono trasferiti file con compressione BZIP nel server FTP nella directory specificata con /home/chm_data /nome_host/anno/mese. Il nome host "%h" è il nome dell'apparecchio come, ad esempio, CHM060001, l'anno "%tY" e il mese "%tm" sono le impostazioni di data specificate dall'apparecchio. Una doppia barra // dopo I,'indirizzo IP indica che il percorso inizia nella directory di origine, una barra semplice / indica l'inizio dalla directory principale del server FTP

Un percorso FTP nella directory di Windows può avere il seguente aspetto:

ftp://afd:eXample@162.168.1.51/%h/%tY/%tm.

Il file viene salvato nella sottodirectory %h/%tY/%tm della directory principale nel server FTP. Il comando "time * * * * * " invia un file NetCDF da 5 minuti immediatamente dopo la creazione.

8.9 Telegramma via Ethernet

Oltre all'interfaccia RS485, anche l'interfaccia Ethernet offre la possibilità di ricevere telegrammi. Sono disponibili due modalità di invio. I telegrammi possono essere richiesti singolarmente (modalità di polling) oppure inviati automaticamente dal nefoipsometro.

Per configurare il comportamento di invio dei telegrammi via Ethernet sono disponibili tre parametri: "LanPort" (Porta LAN), "LanTelegramNumber" (NumeroTelegramma LAN) e "LanTransferMode" (ModalitàTrasferimentoLAN), che possono essere impostati tramite RS485 o l'interfaccia Web nella scheda "Config Network" (Config. Rete), vedere la Tabella 4.

È possibile richiamare tutti i telegrammi di dati dell'utente descritti nella sezione 8.3. Il telegramma di dati grezzi viene ulteriormente sottoposto a codifica UUencode, come nella modalità di trasmissione RS485, e deve essere successivamente decodificato prima di poter essere letto.

Il nefoipsometro (server) attende sulla porta "LanPort" l'arrivo di una richiesta di connessione dall'esterno (dal client). Solo dopo è possibile inviare telegrammi al client. Una simile richiesta può essere eseguita, ad esempio, con ncat o telnet. La richiesta di un client a un nefoipsometro CHM con IP 192.168.100.101 e una porta LAN 11000 potrebbe avere il seguente aspetto:

ncat 192.168.100.101 11000 oppure telnet 192.168.100.101 11000

In sistemi operativi Windows è possibile scaricare e installare file binari dal server <u>https://nmap.org/download.html</u>. In questa pagina Web sono disponibili anche codici binari e codici sorgente per altri sistemi operativi.

Dopo una richiesta di connessione del client, in **modalità di polling** viene inviato un singolo telegramma (nel formato specificato "LanTelegramNumber"), quindi la connessione al nefoipsometro CHM termina. In **modalità di trasferimento automatica** il nefoipsometro CHM invia costantemente (nell'intervallo di registrazione) telegrammi a tutti i client connessi.

8.10 Strumenti dei file NetCDF

Sono disponibili diversi strumenti per l'elaborazione, la modifica o l'unione di file NetCDF. Soprattutto in modalità AFD il programma ncrca.exe è particolarmente potente nell'eseguire l'unione di file per creare file da 24 ore da singoli file di 5 minuti.

Con lo stesso comando è anche possibile unire in file giornalieri singoli file NetCDF da telegrammi di dati grezzi.

ncrca fa parte del set di strumenti nco e può essere scaricato dalla seguente pagina Web:

http://nco.sourceforge.net

Per utenti con sistema operativo Windows:

L'applicazione diretta del comando ncrca.exe nella riga di comando di Windows è limitato dall'uso di caratteri jolly e dalla lunghezza complessiva della riga di comando. Per evitare il problema, si consiglia di usare, ad esempio, git bash.

Esempio:

Le seguenti righe di comando consentono di unire tutti i file NetCDF presenti nella directory dati dell'apparecchio CHM123456 dal 06 aprile 2015. Il file di output dell'esempio è out.nc.

ncrca.exe -Y ncrcat -h data/20150406_Berlino_CHM123456*.nc out.nc

9 Valutazione dei dati / Sky Condition Algorithm (SCA)

Il nefoipsometro CHM 15k è un apparecchio di telerilevamento laser con un algoritmo incorporato per la definizione di strati di particelle e gocce nell'atmosfera. L'algoritmo incorporato viene definito collettivamente Sky Condition Algorithm (SCA). I nefoipsometri definiscono la base delle nuvole e forniscono informazioni sulla profondità di penetrazione nelle nuvole. Se è possibile misurare un'ulteriore strato nuvoloso o di aerosol sopra la nuvola inferiore, è possibile interpretare la profondità di penetrazione come spessore della nuvola. Inoltre viene definito il livello di copertura nuvolosa sotto forma di ottavi del cielo. Per visibilità inferiori a 2 km viene calcolata e indicata anche la visibilità verticale (VOR). Un algoritmo per l'aerosol basato su un algoritmo wavelet rileva diversi strati di aerosol e trasmette quelli rilevati all'interno dello strato limite dell'atmosfera. Nebbia/foschia e precipitazioni vengono rilevate e trasmesse nel parametro Sky Condition Index (SCI).

9.1 Telerilevamento laser

Un laser pulsante vicino all'infrarosso sonda il cielo verticalmente dal lato superiore dello strumento fino a un'altezza di 15 km. Gli obiettivi come gli strati di aerosol e le nuvole appaiono come echi con una specifica intensità di retrodiffusione e attenuazione del segnale. Sia l'assorbimento molecolare che la radiazione di Rayleigh attraverso molecole d'aria sono trascurabili a una lunghezza d'onda del laser di 1064 nm. La distanza delle particelle di diffusione dall'apparecchio viene calcolata dal tempo di propagazione degli impulsi laser.

9.2 Preparazione dei dati di misurazione

La preparazione dei dati è un compito importante da eseguire prima di poter iniziare a eseguire i diversi passaggi dell'algoritmo SCA. Il motivo principale è dato dall'armonizzazione / normalizzazione dei set di dati tra diversi sistemi CHM 15k per ottenere risultati simili, ad esempio per le basi delle nuvole, anche se la sensibilità dei diversi strumenti è diversa.

Ogni singola misurazione viene normalizzata mediante la definizione della sensibilità di rilevamento con un impulso di riferimento p_{calc} . Le differenze tra diversi apparecchi vengono compensate con un fattore di scalatura c_s che viene determinato mediante una misurazione comparativa con un apparecchio di riferimento. Nella Figura 25 viene mostrato il profilo di due diversi apparecchi dopo la normalizzazione e la calibratura.

Figura 25 Segnale di retrodiffusione P(r) normalizzato per unità di misurazione di riferimento (blu) e unità di misurazione di prova (rosso). Per la normalizzazione viene eseguita una misurazione orizzontale con un obiettivo fisso a 9,4 km di distanza. A 16 km di distanza è visibile un impulso di prova nel segnale.

Viene usata la formula indicata di seguito per ottenere la retrodiffusione normalizzata:

$$P(r) = \frac{P_{raw}(r) - b}{c_s \cdot O(r)} \cdot \frac{1}{p_{calc}}$$

Nella formula P_{raw} indica il segnale di retrodiffusione non elaborato, *b* indica il riferimento e O(r) è la funzione di sovrapposizione. *pcalc* e *cs* sono le costanti di normalizzazione e il fattore di calibrazione. Il segnale di retrodiffusione normalizzato P(r) viene moltiplicato per *r*² e salvato nella variabile beta_raw nel file NetCDF.

In un successivo passaggio di elaborazione vengono definiti altitudini delle nuvole e strati di aerosol. Per compensare la riduzione del rapporto segnale / rumore a grandi altitudini, viene calcolata la media del segnale con un tempo di mediazione dipendente dall'altitudine, come rappresentato nella Figura 26. A diverse altitudini la media temporale varia da 15 secondi a meno di 3 km fino a 300 secondi oltre i 6 km.

Figura 26 Esempio di media con diversi intervalli di tempo per determinare le altitudini delle nuvole.

9.3 Base della nuvola e profondità di penetrazione

Dopo una preelaborazione eseguita correttamente viene usato il profilo di retrodiffusione di cui è stata calcolata la media per identificare echi di nuvole, pioggia, nebbia e strati di aerosol e distinguere tra loro tali eventi.

Nella Figura 27 viene mostrato un plot dell'intensità giornaliera in cui tutti i segnali di retrodiffusione significanti sono di colore nero.

L'algoritmo SCA identifica solo eventi di precipitazioni e strutture di aerosol quindi calcola le altitudini delle nubi e le profondità di penetrazione nelle nuvole.

Figura 27 Algoritmo di rilevamento delle nuvole.

9.4 Profondità di penetrazione nella nuvola

Una profondità di penetrazione nella nuvola viene determinata rilevando la base di una nuvola e successivamente la parte superiore della nuvola usando il livello di intensità del segnale che era stato determinato per la base della nuvola. La sottrazione di tali valori restituisce la profondità di penetrazione nella nuvola.

Un metodo a soglia e gradiente viene usato per controllare i dintorni dei valori identificati in modo da determinare un'incertezza della profondità di penetrazione. Nella Figura 28 viene mostrato lo svolgimento del processo di valutazione per i parametri delle nubi.

È necessario notare che l'altitudine della parte superiore della nuvola sopracitata in genere non è il punto più alto della nuvola. La profondità di penetrazione e la copertura nuvolosa sono simili solo se il nefoipsometro rileva un altro strato nuvoloso con obiettivo fisso al di sopra. Nella maggior parte dei casi la luce laser viene diffusa nella nuvola e fortemente attenuata e non è più possibile identificare la parte superiore della nuvola.

Figura 28 Diagramma per la rappresentazione del processo di valutazione per diversi parametri delle nubi.

9.5 Parametri per la valutazione dei dati

Un set di parametri controlla la routine di valutazione dei dati. Dati dipendenti dal sistema vengono archiviati nell'unità di misurazione (LOM). I dati accessibili all'utente sono elencati nella Tabella 4 e nella Tabella 5.

Se lo strumento è inclinato e l'angolo zenitale viene inserito correttamente, la distanza della nuvola e altre distanze vengono corrette con questo angolo.

9.6 Definizione della distanza di rilevamento massima (MXD)

La distanza di rilevamento massima corrisponde alla distanza massima a cui è ancora possibile misurare segnali significativi. Si ottiene dal rapporto segnale / rumore (S/N) in funzione della distanza. Ad altitudini al di fuori del livello limite i segnali significativi si ottengono solo da nuvole o strati di aerosol più densi. La distanza di rilevamento massima viene calcolata indipendentemente dall'algoritmo di rilevamento delle nuvole e può essere usata per verificare il risultato, ad esempio nel caso in cui il nefoipsometro non sia in grado di rilevare né uno strato nuvoloso né una visibilità verticale. In questo caso è possibile usare il parametro MXD per controllare se il risultato "Cielo chiaro" sia corretto.

9.7 Visibilità ottica verticale (VOR)

I metodo per determinare la visibilità verticale (VOR: Vertical Optical Range) è descritto nello standard ISO 28902-1:2012. Di seguito viene descritto passo-passo

come Lufft utilizza il parametro VOR:

Innanzitutto vengono rilevate tutte le sezione nel segnale di retrodiffusione (vedere 9.2 Preparazione dei dati di misurazione) con un rapporto segnale / rumore >5. Per questi intervalli rilevanti viene utilizzato il metodo di inversione di Klett per determinare l'estinzione $\alpha(r)$.

La visibilità verticale ottica è la distanza dove l'integrale delle estinzioni è uguale a 3.

$$\int_0^{VOR} a(r)dr = 3$$

La distanza per il calcolo del parametro VOR è limitata a 3 km di altezza. L'output di dati dipende dal telegramma di dati selezionato. Nei telegrammi standard 1 - 3 la visibilità verticale viene sempre trasmessa, mentre nei telegrammi dell'utente 8 e 9, corrispondenti al telegramma di dati CT25k, viene trasmesso il parametro VOR oppure la base della nuvola.

9.8 Precipitazioni e nebbia

La nebbia e diversi tipi di precipitazioni vengono rilevati tramite la diffusione multipla. Normalmente vengono considerati solo processi di diffusione semplice. Forti foschie atmosferiche e un elevato spessore di particelle generano rispettivamente un segnale più forte del normale vicino all'apparecchio. Un integrale rispetto al segnale viene usato in specifiche aree per valutare foschie e precipitazioni.

9.9 Altezza dello strato misto

Sono aerosol che vengono registrati nello strato inferiore dell'atmosfera vicino al terreno il cui limite superiore può essere definito come strato limite planetario (onshore) e strato limite marino (offshore). Lo strato di aerosol più inferiore che è possibile identificare all'interno dello strato limite può essere interpretato come altitudine dello strato misto (MXL). Come tutte le strutture di strati di aerosol nello strato limite, lo strato MXL dipende dalla condizioni atmosferiche e, nei giorni di sole, soprattutto dall'ora del giorno.

Queste altitudini dello strato di aerosol possono essere identificate per trovare le firme del gradiente nel segnale di retrodiffusione. La qualità degli strati di aerosol rilevati dipende molto dalle condizioni locali e dal tempo. Nella Tabella 18 viene mostrato un indice che descrive la qualità degli strati di aerosol identificati in termini di elevata precisione e bassa incertezza.

Indice di qualità	Descrizione
/ (telegramma) -1 (NetCDF)	Non sono disponibili sufficienti dati grezzi per un calcolo
- (telegramma) Errore hardware o sistema non pronto per la misurazione -2 /NetCDF)	
(telegramma) -3 (NetCDF)	
0 Nessun livello di particelle rilevato (l'indice non era stato calcolato in precedenti versioni del firmware)	
1 Strato di particelle rilevato con elevata precisione (< 50 m)	
9	Strato di particelle rilevato ma con elevata incertezza e bassa precisione

Tabella 18 Descrizione dell'altitudine degli strati di aerosol dell'indice di qualità.

9.10 Grado di copertura (BCC / TCC)

Il grado di copertura nuvolosa viene determinato statisticamente dal comportamento delle basi inferiori delle nubi nel tempo. Viene fatta distinzione tra la copertura dello strato nuvoloso inferiore (BCC: Base Cloud Cover) e la somma di tutti gli strati nuvolosi (TCC: Total Cloud Cover). Anche i valori per questo parametro vengono archiviati nel file NetCDF.

L'intervallo di tempo considerato dipende dall'altitudine (Figura 29). Per ogni intervallo di altitudine viene determinata la frequenza degli strati nuvolosi che vengono rilevati. Questo istogramma viene uniformato con una funzione di ponderazione dipendente dall'altitudine. All'interno di questa distribuzione di frequenze uniformata vengono separati i picchi. Tutte le basi delle nuvole all'interno di un picco vengono unificate in uno strato di nubi.

Le sezioni che includono basi di nuvole vengono contate rispetto al numero totale delle sezioni coniche. I valori della copertura nuvolosa ottenuti da questo confronto vengono espressi in percentuale. Il grado di copertura finale viene indicato in ottavi. Nella Tabella 19 viene elencato il codice WMO 2700 per l'indice di copertura nuvolosa.

Ottavo	Descrizione
- (telegramma) -2 (NetCDF)	Errore hardware del sistema oppure il sistema non è ancora pronto per l'uso
/ (telegramma) -1 (NetCDF) -3 (NetCDF)	Non è stato possibile determinare le basi delle nuvole a causa di nebbia o altri motivi di natura non meteorologica oppure non sono state eseguite osservazioni
0	Cielo chiaro
1	1 okta: 1/10 – 2/10
2	2 okta: 2/10 – 3/10
3	3 okta: 4/10
4	4 okta: 5/10
5	5 okta: 6/10
6	6 okta: 7/10 – 8/10
7	7 okta o più, ma <10/10
8	8 okta: 10/10
9	Il cielo è coperto a causa di nebbia o altri fenomeni meteorologici

Tabella 19 Grado di copertura, codice WMO 2700 e definizioni in decimi.

∐Lufft

Figura 29 Algoritmo del grado di copertura.

Avviso: L'intervallo di tempo selezionato per il calcolo della copertura nuvolosa dipende dall'area in cui una funzione tronco-conica viene usata per il calcolo.

9.11 Sky Condition Index (SCI)

Per comprendere meglio specifici eventi, lo Sky Condition Index viene scritto nel telegramma di dati esteso e nel file NetCDF. In precedenti sistemi CHM la variabile è stata considerata come indice delle precipitazioni.

Nella Tabella 20 viene mostrato come viene definito l'indice.

Valore	Descrizione
 -2 (NetCDF)	Errore hardware del sistema oppure il sistema non è ancora pronto per l'uso (-2 in NetCDF)
00	Né nebbia né precipitazioni rilevate
01	Pioggia
02	Nebbia
03	Neve o nevischio
04	Trasmissione finestra ridotta, gocce sul vetro
// (telegramma) -1 (NetCDF) -3 (NetCDF)	Non vengono eseguite osservazioni nel file NetCDF, i valori numerici -1, -3 vengono usati al posto di // nel telegramma

Tabella 20 Sky Condition Index (SCI).

10 Pulizia, manutenzione e istruzioni per l'assistenza

Dopo l'attivazione dell'alimentazione il nefoipsometro CHM 15k classe 1M emette un fascio laser invisibile dall'uscita sulla parte superiore dell'apparecchio. L'osservazione della radiazione di classe 1M con strumenti ottici può causare gravi lesioni agli occhi.
 Non osservare mai il fascio laser con strumenti ottici (binocolo). Evitare l'osservazione diretta del fascio laser.

In condizioni operative normali è possibile verificare il corretto funzionamento dell'apparecchio tramite due LED (vedere la Figura 30). Un LED rosso nell'angolo in basso a destra della finestra indica un guasto dell'apparecchio. Il LED si accende in presenza di un errore hardware o software che viene rilevato dal controller principale. Per informazioni dettagliate sull'errore trasmesso è possibile consultare il codice di stato dell'interfaccia Web (vedere la Figura 16) oppure il codice di stato tramite RS485 (vedere 8.5 Codice di statos).

Un LED verde nell'angolo in basso a sinistra della finestra indica che la tensione di rete è attiva. Se l'apparecchio è acceso, questo LED deve accendersi. In caso contrario significa che in cavo non è collegato, un interruttore non è attivato oppure sono presenti fusibili difettosi.

10.1 Pulizia

Le coperture trasparenti dell'involucro interno del nefoipsometro CHM 15k vengono testati con un'energia di impatto di 1 Joule (IEC/EN 61010-1: IK06).

	Il funzionamento del sensore con una copertura trasparente danneggiata può causare una scossa elettrica con conseguenti lesioni gravi o letali. Le schegge del vetro possono causare lesioni da taglio.				
	Scollegare subito il nefoipsometro usando il sezionatore esterno se si rileva che una finestra è danneggiata e assicurarsi che il dispositivo non possa essere acceso di nuovo.				
	➡ Indossare guanti di protezione quando si maneggiano vetri rotti.				
	Restituire il sensore a G. Lufft GmbH per la riparazione.				
	AVVISO				
L'appareco	hio si può danneggiare in caso di manutenzione insufficiente / impropria.				
II nefo misura	ipsometro CHM 15k deve essere pulito regolarmente per mantenere la qualità della zione.				
Il nefoi essere specifie	➡ Il nefoipsometro CHM 15k deve essere sottoposta regolare manutenzione. La manutenzione può essere eseguita esclusivamente da personale dell'assistenza di G. Lufft GmbH o da tecnici con specifica formazione.				
➡ Le istru	izioni di manutenzione dettagliate sono disponibili nel manuale di manutenzione.				

Intervallo	Pulizia	Commento / Strumenti			
Ogni 3 mesi ¹	Pulizia dei pannelli di vetro (Figura 30): soprattutto con molta acqua e un po' di sapone neutro. Distribuire	Detersivo per stoviglie, acqua, mani			
	con cautela del sapone sulle finestre usando le mani e risciacquarlo con acqua. Infine risciacquare di nuovo con acqua distillata.	Non usare panni in microfibra per pulire i pannelli!			
Quando serve	Rimozione di depositi nello spazio sotto il coperchio dell'involucro	Detergente neutro; panni in microfibra			
Quando serve	Rimozione di impurità dalle griglie di ingresso delle ventole (lato posteriore)	Mantenere libera l'area di aspirazione della ventola, vedere Figura 31			
Quando serve	Rimozione di neve ²	Mantenere libera l'area di aspirazione della ventola, vedere Figura 31			

Tabella 21 Intervalli e interventi di pulizia.

¹ con carico di polvere medio di $25 - 35 \mu g/m^3$ nell'aria. ² se la neve raggiunge l'ingresso dell'aria della ventola.

Figura 30 Finestre da pulire.

Nell'angolo in basso a destra della finestra di ricezione è presente il "LED di errore" rosso. 1: Uscita laser sul lato sinistro con spia di controllo verde nell'angolo in basso a sinistra 2: Uscita del ricevitore sul lato destro con LED rosso

Figura 31 Apertura della ventola.

L'area sotto la ventola deve essere mantenuta libera da neve e detriti.

10.2 Intervalli e interventi di manutenzione

Nella Tabella 22 è disponibile un elenco degli interventi di manutenzione preventiva consigliati e dei regolari intervalli di controllo. Per eseguire gli interventi manutenzione è necessario aprire lo sportello dell'involucro interno e le attività devono essere eseguite da personale dell'assistenza di G. Lufft GmbH o da personale del cliente autorizzato e con adeguata formazione.

Ulteriori informazioni dettagliate che non rientrano nell'ambito di queste istruzioni (manutenzione, sostituzione, dettagli dell'apparecchio) sono disponibili nel manuale di manutenzione. Tale manuale è disponibile solo per dipendenti di G. Lufft GmbH o personale con specifica formazione in possesso di una certificazione di competenza scritta (certificato valido) per i relativi interventi di manutenzione e riparazione.

Per eventuali domande o se una procedura citata nel presente manuale di istruzioni non risolve un problema esistente, si consiglia di rivolgersi al tecnico dell'assistenza in loco o a G. Lufft GmbH.

Intervallo	Interventi di manutenzione preventiva	Commento
Controlli regolari	Controllo del sacchetto deumidificatore CONTAINER DRI II per assicurarne l'integrità ed eventuale sostituzione	Solo personale dell'assistenza
Almeno 1 volta all'anno	Sostituzione del sacchetto deumidificatore CONTAINER DRI II	Solo personale dell'assistenza
Circa ogni 5 anni	Come misura preventiva: Sostituzione della guarnizione in gomma dello sportello interno (in caso di fatica dei materiali)	Solo personale dell'assistenza
Circa ogni 5 anni	Come misura preventiva: Sostituzione del parafulmine (anche dopo un fulmine)	Solo personale dell'assistenza
Circa ogni 8 anni	Come misura preventiva: Sostituzione della scheda madre elettronica e del modulo laser	Solo personale dell'assistenza
Controlli regolari	Controllo del sacchetto deumidificatore CONTAINER DRI II per assicurarne l'integrità ed eventuale sostituzione	Solo personale dell'assistenza

Tabella 22 Intervalli e interventi di manutenzione preventiva.

11 Allegato

11.1 Versione hardware del nefoipsometro CHM 15k

Revisione	Data di implementazione	Modifiche	Commento
REV 01	01/05/2014	Stato hardware 1 di Lufft	Prima versione dell'hardware Lufft
REV 02	01/09/2014	Aggiornamento della scheda madre del nefoipsometro CHM, nuova: 41.61225	vecchia 61125 nuova: 61225
REV 03	01/06/2015	 1) Nuovo cavo DSL: 2) Nuovo cavo RS485 2x2x0.34 3) Aggiornamento del controller del laser 4) Modem VDSL R4 	 1) TWINAX- Lapp#:2170050 2) Unitronic (schema colori DIN) 3) Versione R1 4) MEG250AE
REV 04	01/07/2015	Nuova scheda di processo a causa di parti obsolete	8350.MCP (vecchia 551, nuova 552)
REV 05	29/07/2015	Scheda madre del nefoipsometro CHM nuova a causa di parti obsolete	8350.MCU
REV 06	01/06/2019	EMC e miglioramenti rilevanti per la sicurezza	

Tabella 23 Versioni hardware (VersioneHardware 0 significa che il valore non è impostato).

11.2 Versione software del nefoipsometro CHM 15k

Questo manuale fa riferimento alla versione del firmware 1.020 di settembre 2019 per il nefoipsometro CHM 15k.

Versione SO / FPGA	Descrizione	Rilascio
SO 12.12.1 FPGA 2.13	CPU 550 : gestione di blocchi danneggiati implementata Ripristino sensore di temperatura ADC	Dic. 2012
SO 15.06.1 FPGA 2.13	Rilascio originale per CPU release 552	Giu. 2015
SO: 15.12.1 FPGA 2.13	 Driver Ethernet: risolve il problema di comunicazione in connessione diretta, laptop – CHM15k Il nome host è impostato correttamente (nome dispositivo). Il nome host è usato da AFD "%h" e inviato a un server DHCP. Nell'interfaccia Web è possibile inserire l'IP e il nome host, ad esempio CHM160122.lufft.de 	Dic. 2015
SO 16.05.1 FPGA 2.13	Rilascio dell'aggiornamento Web 15.06.1 (stesso contenuto di 15.12.1)	Mag. 2016
SO 17.05.01	Problema di avvio con alcune schede SD risolto	Mag. 2017

FPGA 2.13		
SO 18.10.01 FPGA 2.13	Rilevante solo per la produzione. (Uso dell'EEPROM in base al dispositivo (ad esempio durata utile del laser per CHM8k))	Ott. 2018

Tabella 24 Versioni di sistema operativo / FPGA.

Versione firmware	Descrizione	
0.723	 Correzione bug di NetCDF per evitare problemi nel processo ctrl Supporto per nuova scheda processore (2015) 	Mar. 2014
	3. Ultima versione Jenoptik	
0.730	1. Aggiornamento dell'algoritmo di rilevamento delle nuvole durante eventi di precipitazioni	Dic. 2014
	2. Supporto del telegramma via Ethernet, ora usando la porta 11000	
	3. Rilevamento dello strato di aerosol meno sensibile a distanze inferiori per evitare artefatti	
	 Implementazione del parametro di distanza nell'interfaccia Web e dell'interfaccia di comando (RAR, RAS, RAE,RHD) 	
	5. Il rilevamento di nuvole usa una nuova risoluzione flessibile della distanza per consentire una post-elaborazione precisa	
	 Range2DIM in RangeHRDim ridenominato e valore max. impostato su 600 punti dati 	
	7. Numeri di serie di diversi componenti aggiunti in EEPROM (opticconfig)	
	8. Nuovo numero di serie della scheda madre (edizione 2015)	
0.732	 Piccoli adeguamenti dell'algoritmo di rilevamento nubi (frequenza di falsi allarmi inferiore sotto 100 m; modifiche dell'uniformazione del segnale) 	Mag. 2015
	 La prima media inizia a 3 km invece che a 2,2 km,+ migliore corrispondenza per soddisfare i requisiti di servizio 	
	 DeviceName viene conservato quando vengono ripristinate le impostazioni di fabbrica. 	
	 Applicazione delle impostazioni ai valori predefiniti di fabbrica rimossa dall'interfaccia Web (verrà riprogettata e reintegrata in futuro) 	
0.733	 Revisione della scheda madre e revisione della scheda processore mostrate nell'interfaccia Web 	Lug. 2015
	 Bit 12 del codice di stato (temperatura del controller laser) combinato con il bit 13 (interblocco del laser) come nuovo bit 13. 	
	 Verifica dell'aggiornamento del firmware per compatibilità con la scheda processore 	
	(Errore nel bit 12 del codice di stato)	
	4. Riduzione della temperatura valida per l'unità ottica laser da 62°C a 55°C	
	 Aumento della tolleranza per avviso di temperatura dell'APD (bit 26 del codice di stato), adesso è 24°C < x < 28°C 	

Versione firmware	Descrizione		
0.735	 Intervallo di altitudine impostabile ampliato a [-999 m, 9999 m] (adesso si accettano valori negativi) 	Set. 2015	
	 Intervallo impostabile di RangeStart e RangeEnd modificato (RangeStart da [5,3000] a [5,1000]; RangeEnd da [8000,15400] a [5500,15400]) 		
	3. Visualizzazione della durata utile del laser corretta (con LaserInstallTime) nell'interfaccia Web e chmsettings.txt (come nel file NetCDF)		
	4. Nuovi telegrammi predefiniti: #4 (corrispondente al #2) e #5 (corrispondente al #1) con la differenza che sono visualizzate le attività di ventola e riscaldamento, alla fine del telegramma e l'altitudine non ha un simbolo positivo per consentire un maggiore intervallo di altitudine		
0.743	 Algoritmo Aerosol Layer Height (ALH, altitudine strato aerosol) ulteriormente migliorato (per valori di ALH a SNR basso) 	Lug. 2016	
	2. Tabella con misurazioni correnti (cbh, cpd, alh, tcc) visualizzata nella scheda Viewer (Visualizzatore) dell'interfaccia Web (la visualizzazione è limitata a 5 strati).		
	 Nome del file di sovrapposizione usato e relativa data di creazione visualizzati nell'interfaccia Web e salvati nel file NetCDF 		
	 Messaggi telegramma Vaisala CT25K n. 1 e 6 inclusi nei telegrammi utente 8 e 9 		
	5. Funzionamento della scheda SD adattato, il nefoipsometro CHM funziona senza una scheda SD presente		
	 Nuova impostazione DhcpMode & DnsServer disponibile, possibilità di disattivare la modalità DHCP 		
	7. Possibilità di impostare la porta HTTP		
	 Possibilità di impostare la porta LAN e modalità Telegramma per la query del telegramma via LAN. 		
0.747	Nota: ChmDataViewer versione 1.7 richiesto!	Mag.	
	 Parametro CloudDetectionMode visualizzato nell'ultima posizione nell'attributo di NetCDF "software_version" (ad esempio, software_version = "17.05.1 2.13 0.747 1" per la modalità 1) 	2017	
	 Variante di rilevamento nubi "higher low clouds" (nuvole basse più alte) introdotta, utilizzabile con nuove impostazioni di CloudDetectionMode = 1 (RS485 short: CDM). Riavvio necessario dopo la modifica del valore di CloudDetectionMode. 		
	 Correzione per la gestione degli intervalli di tempo dopo l'impostazione dell'ora 		
	 Nessuna visualizzazione di ALH sopra le nuvole e mancato raggiungimento dell'obiettivo durante precipitazioni 		
	5. Gestione di luoghi con dieresi nel nome		
	6. Possibilità di usare il n. telegramma 2 con max 9 strati		
	7. Manuale: integrazione della versione R09		

Versione firmware	Descrizione	
0.754	 Errore lungo "Temperatura APD fuori intervallo" (bit 26) usato solo se PeltierMode è 1 	Mag. 2018
	2. Durata degli errori di lettura della temperatura dell'APD ridotta	
	3. Password del servizio cambiata (password del Superuser non cambiata).	
	 Sincronizzazione del file system interno dopo importanti operazioni di scrittura. 	
	 La ventola non verrà accesa se la temperatura esterna non è valida. La ventilazione relativa al riscaldamento verrà eseguita solo se la temperatura interna è valida. 	
	 La temperatura non valida del modulo determina un errore nel bit di stato 10. 	
	 Disattivazione di AlhFilters in modalità di prova (rilevante per il simulatore di CH). 	
	 Correzione: Possibilità di impostare il parametro Location sul valore predefinito (NN). 	
1.000	.000 Firmware di CHM8k e CHm15k uniti in base alla versione 0.753 e 0.754	
	 Indirizzo universale RS485 99 introdotto, funziona sempre indipendentemente dal valore di RS485Number impostato. 	
	2. Codice di stato aggiornato introdotto, verrà usato nei telegrammi 1 e 5.	
	 Pubblicazione di informazioni di stato dopo il riavvio del dispositivo (in base al motivo del riavvio) nel telegramma, nel Web e in NetCDF. 	
	4. Introduzione di sette memorie di commento aggiuntive per la disponibilità del cliente (32 byte ciascuna). Parametri Comment e Comment 1-7 trasmessi alla fine del telegramma 4. Adesso il telegramma 4 ha una lunghezza variabile. I commenti occupano solo lo spazio corrispondente alla loro lunghezza. Possibilità di impostare Comment 1-7 (CM1-CM7) via RS485.	
	 Determinazione della visibilità solo nei dati dell'intervallo di registrazione corrente. 	
	 Inizio del calcolo della media temporale per l'algoritmo di rilevamento nubi oltre 3050 m. 	
	 Tipo mime per il download di diversi file di impostazione (chm*, afd*, telegram) corretto. 	
	8. Correzione nella funzione di rilevamento nubi (alla versione 0.727): controllo della dimensione	
1.010	1. Miglioramento della gestione dell'errore di lettura della temperatura APD	Nov.
	2. Compensazione dell'overflow della vita utile del laser dal modulo laser nel firmware	2018

Versione firmware	De	escrizione	Rilascio
1.020	1.	Introduzione dell'impostazione LanTransferMode (LTM) (0polling, 1auto), invio automatico di telegrammi via LAN a diversi client disponibile in modalità 1.	Set. 2019
	2.	Introduzione dell'impostazione LanTelegramNumber (LTN) (prima era chiamata LanTelegramMode)	
	3.	Introduzione dello switch SystemStatusMode (SSM) (0 = normale, 1 = codici di stato aggiornati nei telegrammi) (i valori predefiniti sono: 0 per CHM15k, 1 per CHM8k)	
	4.	Scrittura di informazioni aggiuntive (indirizzo MAC, numero di serie della CPU, informazioni di sovrapposizione, versione di scheda madre e CPU) in chmsettings.txt quando viene scaricato	
	5.	Miglioramento della memoria interna dei telegrammi per evitare invii di telegrammi ritardati	
	6.	Errore "temperatura del tubo superiore a 55C" non visualizzato con valori negativi	
	7.	Il manuale di manutenzione non può più essere scaricato nel nefoipsometro CHM, per mantenere una dimensione ridotta del firmware	

Tabella 25 Versioni del firmware.

12 Indice delle figure

Figura 1 Indicazioni di sicurezza7	,
Figura 2 Diagramma funzionale. I numeri tra parentesi corrispondono alla numerazione dell'elenco delle parti di ricambio (vedere il manuale di manutenzione)12	2
Figura 3 Schema del ciclo di misurazione standard13	;
Figura 4 Maschera di foratura15	;
Figura 5 Nefoipsometro CHM 15k imballato e in posizione di trasporto16	j
Figura 6 Nefoipsometro CHM 15k con imballaggio in polistirolo o carta a nido d'ape16	;
Figura 7 Posizioni di sollevamento e protezione per la presa (profilo di protezione del bordo)17	,
Figura 8 Trasporto con carrello a mano17	,
Figura 9 Elementi di fissaggio18	;
Figura 10 Disegno schematico dell'allacciamento elettrico19)
Figura 11 Installazione elettrica del nefoipsometro CHM 15k)
Figura 12 Allacciamento della messa a terra sulla base dell'apparecchio	
Figura 13 Collegamento RS485 a un convertitore di segnale21	
Figura 14 Connessione DSL21	
Figura 15 Vista del browser Firefox con una connessione al nefoipsometro CHM 15k (qui: indirizzo IP fisso)24	ŀ
Figura 16 Interfaccia Web49)
Figura 17 Interfaccia Web: scheda NetCDF Files (File NetCDF) (Superuser))
Figura 18 Interfaccia Web: scheda Viewer (Visualizzatore)51	
Figura 19 Interfaccia Web: configurazione di rete (sola lettura, modalità predefinita) per un apparecchio con IP statico configurato (eth0:1 custom)	I
Figura 20 Interfaccia Web: configurazione di rete (modalità Service)	2
Figura 21 Interfaccia Web: parte superiore della schermata di configurazione del sistema (modalità Service)53	;
Figura 22 Interfaccia Web: parte inferiore della schermata di configurazione del sistema (modalità Service)54	ł
Figura 23 Interfaccia Web: configurazione RS485 (modalità Service)	ļ
Figura 24 Interfaccia Web: avvisi di processo e registro degli errori. Lo stato AFD non è visibile se è impostata la modalità AFD 155	;
Figura 25 Segnale di retrodiffusione P(r) normalizzato per unità di misurazione di riferimento (blu) e unità di misurazione di prova (rosso). Per la normalizzazione viene eseguita una misurazione orizzontale con un obiettivo fisso a 9,4 km di distanza. A 16 km di distanza è visibile un impulso di prova nel segnale58	}
Figura 26 Esempio di media con diversi intervalli di tempo per determinare le altitudini delle nuvole)
Figura 27 Algoritmo di rilevamento delle nuvole)
Figura 28 Diagramma per la rappresentazione del processo di valutazione per diversi parametri delle nubi60)
Figura 29 Algoritmo del grado di copertura63	;
Figura 30 Finestre da pulire66	;
Figura 31 Apertura della ventola67	,

13 Indice delle tabelle

Tabella 1 Varianti dell'apparecchio	8
Tabella 2 Dati tecnici	10
Tabella 3 Comandi per un test funzionale	23
Tabella 4 Elenco dei parametri configurabili dell'apparecchio;	29
Tabella 5 Elenco dei parametri di sola lettura disponibili tramite RS485;	30
Tabella 6 Correlazione tra numero del baudrate e baudrate	33
Tabella 7 Panoramica delle modalità di trasferimento disponibili	34
Tabella 8 Formato del telegramma standard; * = numero a piacere	36
Tabella 9 Formato del telegramma di dati esteso (vedere anche la Tabella 10); * = numero a piacere	39
Tabella 10 Denominazioni nel telegramma di dati esteso	39
Tabella 11 Limitazioni di baudrate dell'intervallo di registrazione	40
Tabella 12 Formato del telegramma di dati grezzi; * = numero a piacere	40
Tabella 13 Dimensioni nel file NetCDF.	42
Tabella 14 Attributi globali nel file NetCDF; *Impostazioni definite dall'utente	43
Tabella 15 Variabili nel file NetCDF.	45
Tabella 16 Codici di stato / Bit di stato	46
Tabella 17 Codici di stato aggiornati (HW: hardware, SW: software, FW: firmware); eliminare*: l'errore viene visualizzato fino a quando non viene risolta la condizione di errore	49
Tabella 18 Descrizione dell'altitudine degli strati di aerosol dell'indice di qualità	61
Tabella 19 Grado di copertura, codice WMO 2700 e definizioni in decimi	62
Tabella 20 Sky Condition Index (SCI)	64
Tabella 21 Intervalli e interventi di pulizia	66
Tabella 22 Intervalli e interventi di manutenzione preventiva.	68
Tabella 23 Versioni hardware (VersioneHardware 0 significa che il valore non è impostato).	69
Tabella 24 Versioni di sistema operativo / FPGA	70
Tabella 25 Versioni del firmware	73

a passion for precision \cdot passion pour la précision \cdot pasión por la precisión \cdot passione per la precisione \cdot a p

ZLufft