# Manual Weather Station WS10

V1.5 - 2019/09/23

passion for precision  $\cdot$  passion pour la précision  $\cdot$  pasión por la precisión  $\cdot$  passione per la precisio





# Content

| Cha                         | inge log |                                       | 1 -    |
|-----------------------------|----------|---------------------------------------|--------|
| 1 Read before commissioning |          |                                       | 2 -    |
|                             | 1.1      | Used symbols                          | 2 -    |
|                             | 1.2      | Guarantee                             | 2 -    |
| 2                           | Safety   |                                       | 2 -    |
|                             | 2.1      | Safety notices                        | 2 -    |
|                             | 2.2      | Warning signs                         | 3 -    |
|                             | 2.3      | Warning signs on the device           | 3 -    |
|                             | 2.4      | Intended use                          | 4 -    |
|                             | 2.5      | Incorrect use                         | 4 -    |
| 3                           | Scope    | of delivery                           | 4 -    |
|                             | 3.1      | Further documents and software        | 4 -    |
| 4                           | Device   | description                           | 5 -    |
|                             | 4.1      | Overview                              | 5 -    |
|                             | 4.2      | Data security                         | 6 -    |
|                             | 4.3      | Air temperature and humidity          | 6 -    |
|                             | 4.4      | Air Pressure                          | 6 -    |
|                             | 4.5      | Precipitation                         | 6 -    |
|                             | 4.6      | Wind                                  | 6 -    |
|                             | 4.7      | Global Radiation                      | 6 -    |
|                             | 4.8      | Position of the sun                   | 7 -    |
|                             | 4.9      | Brightness                            | 7 -    |
|                             | 4.10     | Twilight                              | 7 -    |
|                             | 4.11     | Compass                               | 7 -    |
|                             | 4.12     | UV-Index                              | 8 -    |
|                             | 4.13     | GPS (Global Positioning System)       | 9 -    |
|                             | 4.14     | WLAN                                  | 9 -    |
|                             | 4.14.1   | Wi-Fi Statuscodes                     | - 10 - |
|                             | 4.14.2   | Wi-Fi signal strength                 | - 11 - |
| 5                           | Measu    | rement Output                         | - 12 - |
|                             | 5.1      | Air and Dewpoint Temperature          | - 12 - |
|                             | 5.2      | Humidity                              | - 12 - |
|                             | 5.3      | Air pressure                          | - 12 - |
|                             | 5.4      | Wind Speed                            | - 13 - |
|                             | 5.5      | Wind Direction                        | - 13 - |
|                             | 5.6      | Compass                               | - 13 - |
|                             | 5.7      | Precipitation Quantity - Absolute     | - 14 - |
|                             | 5.8      | Precipitation Quantity - Daily        | - 14 - |
|                             | 5.9      | Precipitation Quantity - Differential | - 15 - |
|                             | 5.10     | Precipitation Intensity               | - 15 - |
|                             | 5.11     | Precipitation Type                    | - 16 - |
|                             | 5.12     | Global radiation                      | - 16 - |
|                             | 5.13     | UV-Index                              | - 16 - |
|                             | 5.14     | Brightness                            | - 16 - |
|                             | 5.15     | Twilight                              | - 17 - |
|                             | 5.16     | Position of The Sun                   | - 17 - |
|                             | 5.17     | Position                              | - 17 - |
|                             | 5.18     | Service Channels                      | - 18 - |
| 6                           | Monta    | ge                                    | - 19 - |
|                             | •        | -                                     |        |

|    | 6.1                   | Installation Sketch 20 -                        |
|----|-----------------------|-------------------------------------------------|
|    | 6.2                   | Connections 21 -                                |
|    | 6.3                   | Fastening 22 -                                  |
| 7  | Comm                  | nissioning 23 -                                 |
|    | 7.1                   | Configuration 23 -                              |
|    | 7.1.1                 | ConfigTool.NET 23 -                             |
|    | 7.1.2                 | Adjustment to the local time zone 25 -          |
|    | 7.1.3                 | Adjustment of location height 26 -              |
|    | 7.1.4                 | Manual adjustment to the north 27 -             |
|    | 7.1.5                 | Wind direction at calm winds 27 -               |
|    | 7.1.6                 | Manual activation of precipitation radar 28 -   |
|    | 7.1.7                 | Deactivating the Wi-Fi 28 -                     |
|    | 7.1.8                 | Activating the reed contact lock 28 -           |
|    | 7.1.9                 | Reset into configuration mode 29 -              |
|    | 7.2                   | Communication with Weather Underground 30 -     |
|    | 7.3                   | Communication through COM1 / RS485              |
|    | 7.4                   | Communication Protocols                         |
|    | 7.4.1                 | UMB binary 31 -                                 |
|    | 7.4.2                 | UMB-ASCII 2.0                                   |
|    | 7.4.3                 | Modbus 34 -                                     |
|    | 7.5                   | Maintanance 41 -                                |
| 8  | Declar                | ation of Conformity 42 -                        |
|    | 8.1                   | EC Certificate of Conformity 42 -               |
|    | 8.2                   | WS10 FCC Compliance Statement (US) 42 -         |
|    | 8.3                   | WS10 IC Compliance Statement (CA) 42 -          |
|    | 8.4                   | WS10 EN 300 440 Compliance Statement 43 -       |
| 9  | Dispos                | sal 44 -                                        |
| 10 | Error h               | handling and Error Codes 44 -                   |
|    | 10.1                  | Error handling 44 -                             |
|    | 10.2                  | Status LED 44 -                                 |
|    | 10.3                  | Error codes UMB 44 -                            |
| 11 | Techn                 | ical Data 45 -                                  |
|    | 11.1                  | Electrical Data 45 -                            |
|    | 11.2                  | Measurements 45 -                               |
|    | 11.3                  | Interfaces 45 -                                 |
|    | 11.4                  | Mechanical data 46 -                            |
|    |                       | Environmental Conditions                        |
|    | 11.5                  |                                                 |
| 12 | 11.5<br>Appen         | environmental conditions                        |
| 12 | 11.5<br>Appen<br>12.1 | Approved Countries for precipitation radar 47 - |

# Change log

| Version | Date       | Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V1.0    | 2018/04/03 | First version (pre-series)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| V1.1    | 2018/07/23 | <ul> <li>Manual alignment description of the WS10</li> <li>Various screenshots for device settings added</li> <li>Modbus register description added and corrected</li> <li>Added new UMB channel descriptions (for example, daily rainfall)</li> <li>Description of configuration mode revised</li> <li>Added sketch for manual wind direction</li> <li>Inserting the manual setting option of the precipitation radar</li> <li>Adjustable behavior of the wind direction in calm conditions documented</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| V1.2    | 2018/07/25 | Final review and minor corrections (typing and presentation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| V1.3    | 2019/02/20 | <ul> <li>Wi-Fi chapter added</li> <li>Chapter 7 Commissioning updated</li> <li>MODBUS-Register GPS-Sensor Status moved</li> <li>MODBUS-Register Wi-Fi Status moved</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| V1.4    | 2019/06/19 | <ul> <li>List of radar admission countries added</li> <li>MODBUS chapter structure reworked</li> <li>MODBUS identification register description added (FW version)</li> <li>Note for indoor temperature measurement added</li> <li>Formatting of ASCII2.0 chapter reworked</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| V1.5    | 2019/09/23 | <ul> <li>Note on static device installation and auxiliary variables</li> <li>Note on Wifi AP-mode: Designed for easy configuration purpose</li> <li>Note on wind module overheating shutdown</li> <li>Note on the warm-up phase of the wind measurement</li> <li>Note on the accuracy of wind measurement during operation indoors</li> <li>Adjusted technical data to changed specification</li> <li>Precipitation types 'freezing rain' and 'sleet' removed</li> <li>Note, that the precipitation type is output even before the precipitation quantity</li> <li>Azimuth and elevation explained, graph added</li> <li>Note that the heating phase of the precipitation sensor is influencing the temperature measurement.</li> <li>A new UMB service channel 4640 "R2S heater status" for the heating status of the precipitation sensor has been added</li> <li>MODBUS register 142 Heater status added</li> <li>Independent orientation recognition of the weather station by integrated compass</li> <li>Chapter Commissioning updated</li> <li>Chapter Safety notices updated</li> <li>Chapter Intended use updated</li> <li>Chapter EC Certificate of Conformity added</li> </ul> |  |

# 1 Read before commissioning



This manual is part of the device It must be stored close to the device, so people in need find it quickly. This manual must be read and understood by the people installing and operating the device. This is valid especially for the chapter safety.

#### 1.1 Used symbols

Important notice for correct operation of the device

- ➡ Necessary step
- Safety note

#### 1.2 Guarantee

The guarantee period is 24 months from the date of delivery. The guarantee is forfeited if the designated use is violated.

# 2 Safety

#### 2.1 Safety notices

- Installation and commissioning may only be carried out by adequately qualified specialists.
- Never measure or touch parts that are under voltage.
- Disconnect the power before working on the device.
- Do not open the device. Operate it only in working and undamaged condition.
- If modified or converted, operating reliability and functionality can no longer be guaranteed.
- If the device is damaged or defective, it must be returned to the manufacturer or an authorized dealer.
- The electrical cables must be checked regularly for damage. Operation of the device with defective or manipulated electrical components is prohibited.
- In addition to these operating instructions, the generally applicable legal rules and other binding guidelines for occupational safety, accident prevention and environmental protection must be observed.
- The device may only be operated within its specifications.
- The device may only be used under the conditions and for the purpose for which it was designed.
- Please observe the warnings attached to the device ( $\rightarrow$  windmeter)
- Observe technical data, storage and operating conditions.

# 2.2 Warning signs

| Symbol      | Meaning                                        |  |
|-------------|------------------------------------------------|--|
|             | Important notice of possible risks to the user |  |
|             | Warning of hot surfaces                        |  |
| 4           | Warning of dangerous electrical voltage        |  |
| Fall hazard |                                                |  |
| ŀ           | Warning of damaging the device                 |  |

# 2.3 Warning signs on the device



Wind measurement dome: Warning of hot surfaces

#### 2.4 Intended use

- This device shall be used to measure and transmit meteorological data.
- This device shall be operated within the specified technical data
- This device shall be used only for the intended use •
- The safety and functionality of the device may be compromised by changes or modifications
- This device uses radar radiation relevant for approval and must only be used in the countries approved for this purpose. The approved countries can be found in the appendix or under www.Lufft.com.

#### 2.5 Incorrect use

If incorrectly installed

- the device may be operable to a limited extent or not at all •
- the device may be permanently damaged
- there can be a risk of injury by the device falling from its mounting

If the device is not properly connected

- the device may fail to operate
- the device may be permanently damaged
- under some circumstances, there is a risk of electric shock

# 3 Scope of delivery



Weather station WS10



#### Connector

#### 3.1 Further documents and software

You will find the following documents and software available to download online at www.lufft.de:

- Manual
- this document
- UMB\*-Protocol 1.0 Specification and description of the UMB (Binary) protocol
  - UMB-ASCII 2.0 Communication protocol for meteorological sensors
- Firmware
- UMB ConfigTool.Net
- latest firmware for this device
- UMB-Configuration-Software\*\* for UMB-Sensors
- UMB Config Tool Manual for UMB-Configuration-Software\*\*
- UMB = Universal-Measurement-Bus
- \*\* PC-Software for Microsoft® Windows® Operating system

#### **Device description** 4

The WS 10 is a compact weather station to measure many different meteorological measurements to be used mainly but not exclusive for home automation.

## 4.1 Overview



2 Transparent glass

1

3 Wind measurement dome



#### Connection

5-pin connector 1



The measurement parameters of the WS10 are optimized for stationary outdoor use. When operating in closed rooms, the accuracy may be limited (e.g. at the workplace). Auxiliary variables such as the compass and GPS position detection (lat./long., altitude) are designed for static operation. Therefore, changes in measured values are often only visible after a considerable delay!

#### 4.2 Data security

To ensure a maximum of data security during the usage of the WS10 there are several security features implemented.

- Wi-Fi credentials are stored encrypted
- The Wi-Fi feature can be deactivated if not needed
- The reed contact to reset the device can be deactivated

#### 4.3 Air temperature and humidity

The air temperature and humidity are measured by a high accuracy digital temperature and humidity sensor.

External influence on the measurement (like sun radiation) is eliminated by a compensation algorithm.

The WS10 needs a 30 min warm up time to measure the air temperature according to spec.



#### 4.4 Air Pressure

The absolute air pressure is measured by an integrated sensor (MEMS) within the device. The barometric altitude formula is used to calculate the relative air pressure in relation to sea level (NN) using the GPS altitude (the altitude that can be set by the user in the device).

#### 4.5 Precipitation

Latest radar technology is used to measure precipitation. The precipitation sensor works with a 24GHz Doppler radar, which measures the drop speed and calculates precipitation quantity and type by correlating drop size and speed.

#### 4.6 Wind

The wind meter uses a heated thermal element. Depending on the wind speed and direction the temperature of the thermal element changes. This temperature change is used to calculate the wind speed and direction.



The WS10 needs a 30 min warm up time to measure the wind speed and direction according to spec.



WS10 features a temperature emergency shutdown to protect the heating bucket from being damaged. All wind related measurement values will report an error in this case. The values will be available again when the temperature is in safe operation conditions again.



Wind measurement is optimized for outdoor usage and depends on air ventilation. You might experience higher temperature divergences when using the device indoors (e.g. workspace).

# 4.7 Global Radiation

The global radiation is measured by a pyranometer mounted in the top cover of the WS10.

#### 4.8 Position of the sun

The position of the sun (azimuth and elevation) is calculated by the geographical position of the weather station plus the current date and time.

The azimuth is the angle between the vertical plane of the sun and the median, it is given from north to east in positive direction.

The elevation is the height of the sun, that is the angle of the sun above the horizon.



#### 4.9 Brightness

The illuminance is measured from the visible light.

#### 4.10 Twilight

Twilight illuminance is measured by the illuminance sensor driven with a different attenuation.

#### 4.11 Compass

The integrated electronic compass can be used to check the north – south adjustment of the sensor housing for wind direction measurement. It is also used to calculate the compass corrected wind direction. Therefore, it is not necessary to adjust the WS10 to the north.

To minimize influences of the ambient temperature, the device carries out an adaption during the first 24 hours of continuous operation. During this phase, deviations in the compass heading might occur. This is a desired behavior and will end after this timeframe.

If there is misdirection in the compass due to surrounding magnetic fields, the electronic compass can be switched off and manual alignment can be specified instead. See configuration.

# 4.12 UV-Index

The UV-Index is a standard measurement value of the strength of sunburn-producing ultraviolet (UV) radiation. The UV radiation is measured with an integrates sensor and the UV-Index is calculated.



| UV-Index | Risk      | Schutz                                                                                                                                                                                                                                                                                                                                                                         |
|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |           | A UV Index reading of 0 to 2 means low danger from the sun's UV rays for the average person.                                                                                                                                                                                                                                                                                   |
| 0-2      | Low       | Wear sunglasses on bright days. If you burn easily,<br>cover up and use broad spectrum SPF 30+ sunscreen.<br>Bright surfaces, such as sand, water and snow, will<br>increase UV exposure.                                                                                                                                                                                      |
|          |           | A UV Index reading of 3 to 5 means moderate risk of harm from unprotected sun exposure.                                                                                                                                                                                                                                                                                        |
| 3-5      | moderate  | Stay in shade near midday when the sun is strongest.<br>If outdoors, wear sun protective clothing, a wide-<br>brimmed hat, and UV-blocking sunglasses.<br>Generously apply broad spectrum SPF 30+ sunscreen<br>every 2 hours, even on cloudy days, and after<br>swimming or sweating. Bright surfaces, such as sand,<br>water and snow, will increase UV exposure.             |
|          | high      | A UV Index reading of 6 to 7 means high risk of harm from unprotected sun exposure. Protection against skin and eye damage is needed.                                                                                                                                                                                                                                          |
| 6-7      |           | Reduce time in the sun between 10 a.m. and 4 p.m. If<br>outdoors, seek shade and wear sun protective<br>clothing, a wide-brimmed hat, and UV-blocking<br>sunglasses. Generously apply broad spectrum SPF<br>30+ sunscreen every 2 hours, even on cloudy days,<br>and after swimming or sweating. Bright surfaces, such<br>sand, water and snow, will increase UV exposure.     |
|          | very high | A UV Index reading of 8 to 10 means very high risk of<br>harm from unprotected sun exposure. Take extra<br>precautions because unprotected skin and eyes will be<br>damaged and can burn quickly.                                                                                                                                                                              |
| 8-10     |           | Minimize sun exposure between 10 a.m. and 4 p.m. If<br>outdoors, seek shade and wear sun protective<br>clothing, a wide-brimmed hat, and UV-blocking<br>sunglasses. Generously apply broad spectrum SPF<br>30+ sunscreen every 2 hours, even on cloudy days,<br>and after swimming or sweating. Bright surfaces, such<br>as sand, water and snow, will increase UV exposure.   |
|          | extreme   | A UV Index reading of 11 or more means extreme risk<br>of harm from unprotected sun exposure. Take all<br>precautions because unprotected skin and eyes can<br>burn in minutes.                                                                                                                                                                                                |
| ≥11      |           | Try to avoid sun exposure between 10 a.m. and 4 p.m.<br>If outdoors, seek shade and wear sun protective<br>clothing, a wide-brimmed hat, and UV-blocking<br>sunglasses. Generously apply broad spectrum SPF<br>30+ sunscreen every 2 hours, even on cloudy days,<br>and after swimming or sweating. Bright surfaces, such<br>as sand water and snow will increase LIV exposure |

Source: Wikipedia.org

# 4.13 GPS (Global Positioning System)

With the build in GPS-Module the WS10 determines the geographical position as well as the date and time.

To ensure a good reception of the GPS signal the WS10 should have free sight to the sky.

The first determination of the position could take up to several minutes.

The current status of the GPS reception can be verified through several UMB channels.

| UMB<br>Channel | Name               | Description                                                                                                                                    |
|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 4071           | gps num satellites | The number of satellites in reach.<br>To determine the position of the WS10 it needs at least<br>3 satellites in reach.                        |
| 4072           | gps position fix   | <ol> <li>position locked</li> <li>latitude and longitude determined (2D)</li> <li>latitude, longitude and elevation determined (3D)</li> </ol> |

#### 4.14 WLAN

The Wi-Fi of the WS10 has three different modes:

- **AP** (Access Point mode to directly connect to the WS10 for configuration)
- STA (Station Mode to be used in an existing Wi-Fi)
- Wi-Fi switched off



Please note, that AP mode is only designed for configuring the sensor. Some measurement values can be used to a limited extent.

The AP Mode is signaled by a blink signal (every 10 sec) of the green status LED.

The WS10 will stay for a maximum of 30min in the AP Mode.

The STA Mode has no additional signaling from the status LED as this is the normal operating mode.

With the config pin (see chapter 6.2) or the reed contact (Magnet) you can toggle between the AP and STA Mode.

If you activate the reed contact the WS10 will confirm this with a white status LED. After that you will see a

green status LED (if you started the AP mode) or a

blue status LED (if you started the STA mode).

For security reasons, the function of the reed contact can be deactivated (see chap 7.1.8)

After the WS10 is powered up, it will try to lock into the Wi-Fi with the configured credentials (to configure the Wi-Fi credentials (please see chap. 7.1.1)

If the configuration is wrong (e.g. wrong password), the WS10 will automatically fall back into AP mode, so you be able to re-configure the Wi-Fi credentials via direct connection.

To see a more detailed status of the Wi-Fi connection (e.g. to debug why a Wi-Fi login doesn't work), please read out the UMB channels 4060 "wifi status" and the channel 4061 "wifi signal".

## 4.14.1 Wi-Fi Statuscodes

To debug the current status of the Wi-Fi connection you can read out the UMB channel 4060 "wifi status".

The status is coded in a 5-digit number.

| XX   | Right two digits show connection status                                            |  |
|------|------------------------------------------------------------------------------------|--|
| . XX | The two digits in the middle show the last established stage of the connection.    |  |
|      | This can be used to find the possible cause of a non-functioning Wi-Fi connection. |  |
|      | See table below                                                                    |  |
| Х    | The left digit shows the current status summary:                                   |  |
|      | 1 = waiting                                                                        |  |
|      | 2 = trying to connect                                                              |  |
|      | 3 = waiting and trying again                                                       |  |

| Common status codes |                                                    |  |
|---------------------|----------------------------------------------------|--|
| x xx 00             | Wi-Fi switched off                                 |  |
| x xx 01             | Wi-Fi switched on                                  |  |
| x xx 02             | Wi-Fi is activated<br>SSID and password configured |  |

| Error codes |                                   |
|-------------|-----------------------------------|
| x xx 5X     | Too many error codes              |
|             | Too many unsuccessful connections |

| STA Status codes                                |                                            |                                                         |
|-------------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| Status code                                     | Description                                | Possible errors                                         |
| x xx 03                                         | Setting Wi-Fi operating mode STA           |                                                         |
| x xx 04                                         | Enabling Wi-Fi radio                       | Wi-Fi-Modul hardware<br>defect                          |
| x xx 05                                         | Wi-Fi radio switching on                   |                                                         |
| x xx 12                                         | Start connection to SSID                   | SSID wrong<br>Password wrong<br>Signal strength too low |
| x xx 20                                         | Weather Underground name resolve requested | Weather Underground credentials wrong                   |
| xx 21 Weather Underground successfully resolved |                                            | Weather Underground not reachable                       |

| AP Mode Status codes                 |                                 |                                |
|--------------------------------------|---------------------------------|--------------------------------|
| Status code Description Possible err |                                 | Possible errors                |
| x xx 30                              | Setting Wi-Fi operating mode AP |                                |
| x xx 31                              | Enabling Wi-Fi radio            | Wi-Fi-Modul hardware<br>defect |
| x xx 32 Wi-Fi radio switching on     |                                 |                                |

# 4.14.2 Wi-Fi signal strength

Through the UMB-channel 4061 "wifi signal" you can determine the signal strength of the Wi-Fi signal.

| Signal    | Quality   |
|-----------|-----------|
| >-50 dBm  | very good |
| -5060 dBm | good      |
| -6770 dBm | ОК        |
| -7080 dBm | weak      |
| < 80 dBm  | very weak |

# 5 Measurement Output

Measurements are transmitted in accordance with UMB binary protocol (Factory Settings).

It is recommended to set up and poll the station with ConfigTool.NET.

You can find an example of a measurement request in different protocols and a complete summary of the list of channels in the Appendix.

The measurement range listed in the table is used for the UMB ASCII protocol.

#### 5.1 Air and Dewpoint Temperature

| Sampling rate | 1 Minute |
|---------------|----------|
| Units         | °C: °F   |

Request channels:

| UMB Channel |                                | Me  | easuring rar | ige  |
|-------------|--------------------------------|-----|--------------|------|
| act         | Measurement variable (float32) | min | max          | unit |
| 100         | Air temperature                | -40 | 60           | °C   |
| 105         | Air temperature                | -40 | 140          | °F   |
| 110         | Dewpoint temperature           | -40 | 60           | °C   |
| 115         | Dewpoint temperature           | -40 | 140          | °F   |

#### 5.2 Humidity

Sampling rate 1 Minute Units %r.H.; g/m<sup>3</sup>

Request channels:

| UMB Channel |                                | Me  | easuring rar | nge  |
|-------------|--------------------------------|-----|--------------|------|
| act         | Measurement variable (float32) | min | max          | unit |
| 200         | Relative humidity              | 0   | 100          | %    |
| 205         | Absolute humidity              | 0   | 1000         | g/m³ |

#### 5.3 Air pressure

Sampling rate 1 Minute Units hPa

 Request channels:

 UMB Channel

 act
 Measurement variable (float32)

| act | Measurement variable (float32) | min | max  | unit |
|-----|--------------------------------|-----|------|------|
| 300 | Absolute air pressure          | 500 | 1100 | hPa  |
| 305 | Relative air pressure          | 500 | 1100 | hPa  |

Measuring range

# 5.4 Wind Speed

| Sampling rate    | 1sec                           |     |              |      |
|------------------|--------------------------------|-----|--------------|------|
| Units            | m/s; km/h; mph; kts            |     |              |      |
| Response thresho | ld 0,1 m/s                     |     |              |      |
| Request channels | :                              |     |              |      |
| UMB Channel      |                                | Me  | easuring rar | nge  |
| act              | Measurement variable (float32) | min | max          | unit |
| 400              | Wind speed                     | 0   | 40           | m/s  |
| 405              | Wind speed                     | 0   | 144          | km/h |
| 410              | Wind speed                     | 0   | 89,4775      | mph  |
| 415              | Wind speed                     | 0   | 77,7538      | kts  |

## 5.5 Wind Direction

| Sampling rate      | 1sec    |
|--------------------|---------|
| Units              | 0       |
| Response threshold | 0,1 m/s |
| Request channels:  |         |

| UMB Channel |                                | Measuring range |     | range |
|-------------|--------------------------------|-----------------|-----|-------|
| act         | Measurement variable (float32) | min             | max | unit  |
| 500         | Wind direction                 | 0               | 360 | 0     |
| 502         | Wind direction, compass        | 0               | 360 | 0     |

• Ch. 500 wind direction measured by the wind sensor adjusted by the value of the manual adjustment to the north (see chapter **Manual adjustment to the north**).

• Ch. 502 wind direction is calculated from the wind direction measured by the wind sensor and the heading measured by the compass.

During calm wind situations the WS10 will keep the last measured wind direction. This can be adjusted in the ConfigTool.NET (see chapter Wind direction at calm winds).

#### 5.6 Compass

Sampling rate 1 sec (mean value over 16 measurements) Units °

| UMB Channel |                                | Me  | easuring rar | nge  |
|-------------|--------------------------------|-----|--------------|------|
| act         | Measurement variable (float32) | min | max          | unit |
| 510         | Compass heading                | 0   | 360          | o    |

# 5.7 Precipitation Quantity - Absolute

| Sampling rate      | Event-dependent on reaching the response threshold |
|--------------------|----------------------------------------------------|
| Units              | l/m²; mm; in; mil                                  |
| Response threshold | 0,01mm (Radar)                                     |
| Poquest channels:  |                                                    |

| UMB Channel |                                   | Me  | easuring rar | ige  |
|-------------|-----------------------------------|-----|--------------|------|
| act         | Measurement variable (float64)    | min | max          | unit |
| 600         | Precipitation Quantity - Absolute | 0   | 100000       | l/m² |
| 620         | Precipitation Quantity - Absolute | 0   | 100000       | mm   |
| 640         | Precipitation Quantity - Absolute | 0   | 3937,008     | inch |
| 660         | Precipitation Quantity - Absolute | 0   | 3937008      | mil  |

This measurement indicates the accumulated precipitation quantity since the last reeboot of the device. The measurement is retained for the duration of a short power failure. To reset this value, use the corresponding function in the UMB-Config-Tool or disconnect the device from the power supply for some minutes.

To reset this value, please click on the

Unbol in the UMB-Config-Tool.

| Device Reset    | × |
|-----------------|---|
| Target          |   |
| Device          | - |
| 0x7001 WS10_1   | • |
| Reset Type      |   |
| Soft Reset      | * |
| Soft Reset      |   |
| Factory Reset   |   |
| Device ID Reset |   |
| Custom Reset    |   |
| Hard Decet      |   |

Select Custom Reset under Reset Type. Press the Reset button to reset the precipitation values to zero.

## 5.8 Precipitation Quantity - Daily

| Sampling rate      | Event-dependent on reaching the response threshold |
|--------------------|----------------------------------------------------|
| Units              | l/m²; mm; in; mil                                  |
| Response threshold | 0,01mm (Radar)                                     |

| Request channels: |                                |     |       |      |  |
|-------------------|--------------------------------|-----|-------|------|--|
| UMB Channel       | Nel Measuring range            |     |       |      |  |
| act               | Measurement variable (float64) | min | max   | unit |  |
| 601               | Precipitation Quantity - Daily | 0   | 200   | l/m² |  |
| 621               | Precipitation Quantity - Daily | 0   | 200   | mm   |  |
| 641               | Precipitation Quantity - Daily | 0   | 7,874 | in   |  |
| 661               | Precipitation Quantity - Daily | 0   | 7874  | mil  |  |

# 5.9 Precipitation Quantity - Differential

| Sampling rate      | Event-dependent on reaching the response threshold |
|--------------------|----------------------------------------------------|
| Units              | l/m²; mm; in; mil                                  |
| Response threshold | 0,01mm (Radar)                                     |
| Request channels:  |                                                    |

| UMB Channel |                                       | Measuring range |          |      |
|-------------|---------------------------------------|-----------------|----------|------|
| act         | Measurement variable (float32)        | min             | max      | unit |
| 605         | Precipitation Quantity - Differential | 0               | 100      | l/m² |
| 625         | Precipitation Quantity - Differential | 0               | 100      | mm   |
| 645         | Precipitation Quantity - Differential | 0               | 3,937    | in   |
| 665         | Precipitation Quantity - Differential | 0               | 3937,008 | mil  |

Each request from a differential channel sets the accumulated quantity back to zero!

# **5.10 Precipitation Intensity**

| Sampling rate      | 1 Minute                                  |  |  |
|--------------------|-------------------------------------------|--|--|
| Units              | l/m²/h; mm/h; in/h; mil/h; mm/min; in/min |  |  |
| Response threshold | 0,01 mm/h                                 |  |  |
| Request channels:  |                                           |  |  |
| UMB Channel        |                                           |  |  |

| UMB Channel |                                | Measuring range |       |        |
|-------------|--------------------------------|-----------------|-------|--------|
| act         | Measurement variable (float32) | min             | max   | unit   |
| 800         | Precipitation intensity        | 0               | 30    | l/m²/h |
| 820         | Precipitation intensity        | 0               | 30    | mm/h   |
| 825         | Precipitation intensity        | 0               | 0,5   | mm/m   |
| 840         | Precipitation intensity        | 0               | 1,181 | in/h   |
| 845         | Precipitation intensity        | 0               | 0,02  | in/m   |
| 860         | Precipitation intensity        | 0               | 1181  | mil/h  |



 The WS10 calculate the precipitation intensity from the averaged measurement values of the previous minute.

# 5.11 Precipitation Type

| Sampling rate    | Event-dependent on reac   | hing the response threshold          |
|------------------|---------------------------|--------------------------------------|
| Response thresho | old 0,002mm (Radar)       |                                      |
| Follow-up time   | 2 minutes                 |                                      |
| Request channels | :                         |                                      |
| UMB Channel      | Measurement Value (uint8) | Coding                               |
|                  |                           | 0 = no precipitation                 |
| 700              | Dresinitation turns       | 60 = liquid precipitation, e.g. rain |
| 700              | Precipitation type        | 70 = solid precipitation, e.g. snow  |
|                  |                           | 90: hail                             |

A detected precipitation type remains valid for 2 minutes after the end of the precipitation event. In order to record precipitation types which only occur for a short period (e.g. short-term rain), the request interval should be 1 minute or shorter.

The precipitation type is already output at 0,002mm precipitation, that is even before the response threshold of the precipitation quantity (0,01mm) is reached.

## 5.12 Global radiation

| Sampling rate | 1 sec |
|---------------|-------|
| Unit          | W/m²  |

| Request channels | : |  |      |  |
|------------------|---|--|------|--|
| UMB Channel      |   |  |      |  |
|                  |   |  | <br> |  |

| UMB Channel |                                | Measuring range |      |      |
|-------------|--------------------------------|-----------------|------|------|
| act         | Measurement variable (float32) | min             | max  | unit |
| 900         | Global radiation               | 0               | 1300 | W/m² |

# 5.13 UV-Index

Sampling rate 1 sec

Unit digits

Request channels:

| UMB Channel |                              | Measuring range |     |        |
|-------------|------------------------------|-----------------|-----|--------|
| act         | Measurement variable (uint8) | min             | max | unit   |
| 902         | UV-Index                     | 0               | 13  | digits |

# 5.14 Brightness

Sampling rate 5 sec Unit klx

| UMB Channel |                                | Measuring range |     |      |
|-------------|--------------------------------|-----------------|-----|------|
| act         | Measurement variable (float32) | min             | max | unit |
| 903         | Brightness                     | 0               | 120 | klx  |

# 5.15 Twilight

| Sampling rate  | 5 sec                          |                 |     |      |
|----------------|--------------------------------|-----------------|-----|------|
| Unit           | lx                             |                 |     |      |
| Request channe | els:                           |                 |     |      |
| UMB Channe     | 1                              | Measuring range |     |      |
| act            | Measurement variable (float32) | min             | max | unit |
| 904            | Twilight                       | 0               | 500 | lx   |

# 5.16 Position of The Sun

Sampling rate 10 sec

Unit ° Request channels:

| UMB Channel |                                 | M   | easuring ran | ge   |
|-------------|---------------------------------|-----|--------------|------|
| act         | Measurement variable (float32)  | min | max          | unit |
| 910         | Position of the sun - azimuth   | 0   | 360          | o    |
| 911         | Position of the sun - elevation | 0   | 90           | o    |

# 5.17 Position

Sampling rate 10 sec

| UMB Channel |                                  | Measuring range |            | je     |
|-------------|----------------------------------|-----------------|------------|--------|
| act         | Measurement variable (float32)   | min             | max        | unit   |
| 3900        | Position longitude               | -180            | 180        | o      |
| 3901        | Position latitude                | -90             | 90         | o      |
| 3902        | Position height                  | -1000           | 10000      | m      |
| 3903        | UTC timestamp (uint32)           | 0               | 4294967295 | S      |
| 4071        | GPS number of satellites (uint8) | 0               | 255        | digits |
| 4072        | GPS Position locked (uint8)      | 0               | 255        | digits |

# 5.18 Service Channels

| UMB Channel |                                                                         | Measuring range |            | je     |
|-------------|-------------------------------------------------------------------------|-----------------|------------|--------|
| act         | Measurement variable (float32)                                          | min max         |            | unit   |
| 4060        | Wi-Fi status (uint16)<br>(refer to chapter 4.14.1 for details)          | 0               | 65535      | digits |
| 4061        | Wi-Fi signal strength (sint16)<br>(refer to chapter 4.14.2 for details) | -32767          | 32767      | digits |
| 4640        | Heater status<br>(refer to chapter 4.3 for details)                     | 0               | 1          | logic  |
| 4700        | Device runtime (uint32)                                                 | 0               | 4294967295 | S      |
| 4701        | Attended time (uint32)                                                  | 0               | 4294967295 | S      |
| 4702        | Number boot cycles (uint32)                                             | 0               | 4294967295 | digits |
| 4703        | UTC timestamp (uint32)                                                  | 0               | 4294967295 | S      |
| 4704        | Local timestamp (uint32)                                                | 0               | 4294967295 | S      |
| 10000       | Supply voltage (float32)                                                | 0               | 50         | V      |

# 6 Montage



# A Caution

#### Hazard of falling objects.

- $\Rightarrow$  Make sure the device is mounted correctly and safe.
- rightarrow During installation make sure no objects can fall.

#### Important notices for installing

- Installation and commissioning may only be carried out by adequately qualified specialists.
- Never measure or touch parts that are under voltage.
- Observe technical data, storage and operating conditions.
- ▶ The intended location is outdoors. The device must not be operated in closed rooms.
- ► The building-side holding device must be sufficiently dimensioned and firmly anchored.
- The device must be secured in such a way that there are no objects, trees or other objects in the immediate vicinity that could affect the acquisition of the measured data.
- The direct measuring range in front of the device must be kept clear of all obstacles in any case.
- All work must be carried out when the device is de-energized. Only connect the power supply to the mains once all assembly work has been completed correctly.
- The cables to and from the device must be fastened in such a way that no tension is exerted on the plug connection during operation.
- Lay the cables so that they cannot be damaged.
- Lay the cables so that nobody can trip over them.
- To ensure a reliable rain radar measurement, the WS10 must be at least 8 m apart.

The following tools are required for installation:

• fork or ring spanner SW10

# 6.1 Installation Sketch





To achieve a correct measurement of global radiation, make sure the WS 10 is in all directions horizontally aligned.



To ensure the correct functionality of the WS10 the notes below concerning the place of installation must be followed:

- Free sight to the sky for the correct function of the GPS module and the precipitation measurement the WS10 must have a free sight to the sky.
- To ensure correct measurements of any kind of sun-imposed radiation make sure that there is never shade on the WS10.
- To ensure correct wind measurements there should be no bigger obstacle (tree, building, etc.) within 5m around the WS10.

Not following the above-mentioned notes may lead to wrong measurements.

#### 6.2 Connections

The WS 10 is to be supplied with a direct voltage of typ. 24 VDC (9-36VDC). The power supply unit used must be approved for the operation of devices with protection class III (SELV).

#### It is recommended to operate the WS10 at 24V DC!

The power supply must serve at least 35W @ 24V. The power connection must be fused by a 2.5A (slow-blow) fuse.

The connection cable must meet the following requirements:

- UV resistant
- external diameter of 4-6mm
- and a wire gauge of at least 0,3mm<sup>2</sup>
- Max. connection length 30m ≥ 15V DC, otherwise 15m



Positive voltage  $(+V_{in} 9..36V)$  at the configuration pin 5 forces the WS10 into configuration mode and activates the Wi-fi access point mode.

# This pin does not need to be connected, but it is recommended to connect it to GND when not in use.

The device has a half-duplex, 2-wire RS485 interface for configuration, measured value query and firmware update.

As connection cable we suggest: Lappkabel UNITRONIC® SENSOR, 5x0,34mm<sup>2</sup> (ord.nr: **7038902**) Or any other UV-stable cable with equal characteristics.

# 6.3 Fastening



4 Cable

The WS10 is mounted on a tube in horizontal position. Make sure the tube is mounted safely at a fixed mounting point (e.g. mast, building, etc.)

- $\Rightarrow$  Put the connector (1) of the connecting cable into the connector (2) of the WS10 (3).
- $\Rightarrow$  Pull the connecting cable (4) through the tube (5).
- rightarrow Loosen the screw (6) at the bracket (7).
- Push the tube (5) into the WS10 bracket until the very end. Make sure you do not damage the connecting cable.
- righten the screw (6) at the bracket (7).

# 7 Commissioning

|          | A Caution                               |  |
|----------|-----------------------------------------|--|
| $\wedge$ | Warning of hot surfaces.                |  |
| <u></u>  | Do not touch the wind measurement dome. |  |

## 7.1 Configuration

After connecting the supply voltage, the WS10 will start automatically.

If there is no Wi-Fi configured, the WS10 starts in Wi-Fi access point mode. By using the UMB-ConfigTool.NET you can now configure the WS10.

To configure the WS10 you need a Wi-Fi capable device running Windows<sup>®</sup>-PC Software or Android<sup>®</sup> operating system and the Lufft ConfigTool.NET. The Lufft ConfigTool.NET can be downloaded on the Lufft internet web site or installed directly from the Android<sup>®</sup> Playstore.

As long as no GPS position has been determined, the rain channels, the sun channels (910 "sun dir. azimuth" and 911 "sun dir. elevation") and channel 3903 "utc time" provide a BUSY error code (28h).

## 7.1.1 ConfigTool.NET





Be aware, that the configuration mode is limited to 30 min.

Configuration mode will be indicated by LED blinking green

To ensure a stable Wi-Fi connection you should be within 10m around the WS10 with your device running the UMB-ConfigTool.NET.

G. LUFFT Mess- und Regeltechnik GmbH 8368.WS10P WS10

Contains FCC ID: UF9WS010 Contains IC: 6650A -WS010 Made in Germany

CE

M/N: WS10 operating voltage: 24 VDC

Contains FCC ID: QOQ-WGM110 Contains IC: 5123A-WGM110

- ➡ Connect your device with the WS10 Wi-Fi access point
- SSID: WS10\_Wifi-<serial number>
- Password: <serial number> to be found on the label)
   During the connection to the WS10 there is no connection to the Internet possible.
- Start the Lufft UMB-ConfigTool.NET



- $\Rightarrow$  Click on the  $\square$  Button to open a new workspace.
- $\Rightarrow$  In the Com Channel menu, please set the Connection to Type TCP and confirm with OK.
- $\Rightarrow$  Click on the + Button to add a new device.
- Under Found devices you should see the WS10 with the IP-Address 192.168.1.1, you can add a name to the device and confirm with OK.

| WS10_1: 192.168.1.1 | • |           |  |   |
|---------------------|---|-----------|--|---|
| Name                |   |           |  |   |
| WS10_1              |   |           |  |   |
| Device Class        |   | Device ID |  |   |
| WSx-UMB             | - |           |  | 1 |

After you added the WS10 device successfully, your list of devices should look like this

| Workspace Details                        |    |
|------------------------------------------|----|
| Name                                     |    |
| Devices                                  |    |
| WS10_1<br>0x7001 231 Channels 0 selected | ₽₽ |
|                                          | Ť  |
|                                          |    |
|                                          |    |
|                                          |    |
|                                          |    |
|                                          |    |

- rightarrow To further configure the WS10 click on the device entry.
- Through the 🏟 Button you get to the configuration menu. Insert your Wi-Fi SSID and Wi-Fi key.

| WiFi            |         |
|-----------------|---------|
| Wifi            | Enabled |
| Mode            | DHCP    |
| IPv4 address    | 0.0.0.0 |
| Subnet mask     | 0.0.0.0 |
| Gateway address | 0.0.0.0 |
| DNS address     | 0.0.0.0 |
| WiFi encryption | WPA2    |
| WiFi SSID       |         |
| WiFi key        |         |
| WiFi TCP port   | 9750    |

Your Wi-Fi credentials are stored encrypted in the WS10.

- Save the configuration to the WS10 with 1 This will automatically restart the WS10 with the new configuration.
- ▷ Connect your device to the local Wi-Fi you configured the WS10 for.
- rightarrow Click again on the device entry to further configure the WS10.
- $\Rightarrow$  Click on the  $\oint$  to change the connection details.
- Delete the IP or Hostname in the TCP/IP section.

| TCP/IP          |   |
|-----------------|---|
| IP or Hostname: |   |
| TCP Port:       | 0 |

- $\Rightarrow$  After that the new IP address of the WS10 will be shown and can be confirmed with OK.
- $\Rightarrow$  Now you can further configure the WS10.



Due to the integrated electrical compass a manually north alignment is not necessary and therefore must not be configured.

The complete functionality of the ConfigTool .NET is described in the help function.

#### 7.1.2 Adjustment to the local time zone

The system time (UTC) of the WS10 is adjusted automatically by the GPS-Modul. To adjust the WS10 to the local time zone where the WS10 is installed, you need to enter the respective offset value.



Please be aware – the offset value may change with the change of summer- and wintertime (daylight saving time).

E.g. For central Europe the time zone is UTC +1h (wintertime) and UTC +2h (summertime). The respective offset would be 3600s or 7200s.

Through the **\$** Button in the ConfigTool.NET you get to the configuration menu. Under **GPS – UTC local time offset** you may adjust your desired time offset in seconds.

| GPS                      |            |
|--------------------------|------------|
| UTC local time offset    | 0          |
| Location height setting  | Auto (GPS) |
| Location height in meter | 275        |
| Station latitude         | 48.8296967 |
| Station longitude        | 9.259797   |

#### 7.1.3 Adjustment of location height

Through the 🏟 Button in the ConfigTool.NET you get to the configuration menu.

Under **GPS – Location height** you can select between Manual and Auto configuration. Using **Auto (GPS)** mode, WS10 will retrieve the altitude from its internal GPS sensor. In **Manuel** mode you can specify your location height manually.

| GPS                      |            |        |
|--------------------------|------------|--------|
| UTC local time offset    | 0          |        |
| Location height setting  | Manual     | $\sim$ |
| Location height in meter | Auto (GPS) |        |
| Station latitude         | Manual     |        |
| Station longitude        | 9.259797   |        |

#### 7.1.4 Manual adjustment to the north

In rare occasions there is a need to manually adjust the WS10 to the north. This could be the case if the WS10 is mounted close to a strong magnetic field or large steel constructions.

To manually adjust the WS10 to the north, you must enter the difference in degree between the WS10 connector and the magnetic north.



Through the 🏟 Button in the ConfigTool.NET you get to the configuration menu.

Under Wind - Manual angle alignment in degrees you can enter the direction of the WS10.

| Wind                              |                          |  |
|-----------------------------------|--------------------------|--|
| Wind direction at inactivity      | Freeze (Home Automation) |  |
| Manual angle alignment in degrees | 0                        |  |

#### 7.1.5 Wind direction at calm winds

The WS10 offers two ways to report wind direction at calm winds.

- 1. Freeze means the WS10 reports the last measured wind direction
- 2. North means the WS10 reports 0° as wind direction

Through the 🏟 Button in the ConfigTool.NET you get to the configuration menu.

Under **Wind – Wind direction at inactivity** you can make your choice what should be reports at calm winds.

| Wind                         |                          |   |
|------------------------------|--------------------------|---|
| Wind direction at inactivity | Freeze (Home Automation) | • |
|                              | Freeze (Home Automation) |   |
|                              | North (Meteo)            |   |

#### 7.1.6 Manual activation of precipitation radar

Because of country individual regulation the precipitation radar is switched of automatically by a geofencing algorithm in countries where there is no approval.

If you want to manually switch on the precipitation radar, you can use the ConfigTool.NET to do so.

Through the 🏟 Button in the ConfigTool.NET you get to the configuration menu.

# Under **Radar rain sensor – Radio regulations** you need to select **Manual** and under **Manual setting** you need to choose the country standard you want to comply to.

| - | Radar rain sensor          |                  |  |  |  |
|---|----------------------------|------------------|--|--|--|
|   | Rainfall correction factor | 1                |  |  |  |
|   | Radio regulations          | Manual           |  |  |  |
|   | Manual setting             | EU (ETSI) 🗸      |  |  |  |
|   |                            | Off              |  |  |  |
|   |                            | EU (ETSI)        |  |  |  |
|   |                            | USA/Canada (FCC) |  |  |  |



The operation of precipitation radar outside the approved countries is not permitted by law. The operator acts at his own risk and is responsible for a possible criminal liability itself. Lufft rejects any liability for the operation of precipitation radar outside the countries approved by Lufft.

**A** Caution

## 7.1.7 Deactivating the Wi-Fi

If you do not use the Wi-Fi connection, you can switch off the Wi-Fi function in the configuration menu.

| - | WiFi |          |        |
|---|------|----------|--------|
|   | WiFi | Enabled  | $\sim$ |
|   |      | Disabled |        |
|   |      | Enabled  |        |

## 7.1.8 Activating the reed contact lock

To prevent deleting the configuration accidentally you can lock the function of the reed contact in the configuration menu.

| - | WiFi                 |                |  |  |  |  |
|---|----------------------|----------------|--|--|--|--|
|   | WiFi                 | Enabled        |  |  |  |  |
|   | Mode                 | DHCP           |  |  |  |  |
|   | IPv4 address         | 0.0.0.0        |  |  |  |  |
|   | Subnet mask          | 0.0.0.0        |  |  |  |  |
|   | Gateway address      | 0.0.0.0        |  |  |  |  |
|   | DNS address          | 0.0.0.0        |  |  |  |  |
|   | WiFi encryption      | WPA2           |  |  |  |  |
|   | WiFi SSID            | Lufft_Hardware |  |  |  |  |
|   | WiFi key             |                |  |  |  |  |
|   | WiFi TCP port        | 9750           |  |  |  |  |
|   | Magnetic switch lock | Disabled 🗸     |  |  |  |  |
|   |                      | Disabled       |  |  |  |  |
|   |                      | Enabled        |  |  |  |  |
|   |                      |                |  |  |  |  |

#### 7.1.9 Reset into configuration mode

If the WS10 is due to miss configuration not accessible anymore through the WLAN, you can reset the WS10 to the configuration mode in two ways.

- 1. Position a magnet close to the housing where you can read 'Reed' on the housing.
- 2. Connect B+ to Pin 5 of the WS10 connector

Switching to the configuration mode is indicated by a short blue flashing of the status LED.

If the WS10 is in configuration mode, this is indicated by a green flashing every 10s of the status LED.

Please note that configuration mode is only active for 30min.

## 7.2 Communication with Weather Underground

To see the WS10 measurement values online in the public internet a Weather Underground connection is necessary.

- Call the Weather Underground site <a href="https://www.wunderground.com">https://www.wunderground.com</a>
- ➡ Choose "More" and "Add Weather Station"
- Step 1: Register Your Station choose "Join"
- Enter your email-Address and choose a password
- Read the ,Terms of Service' and agree to them by checking the respective box
- rightarrow Click the button 'Sign up' to finalize the registration

After a successful registration you can register your weather station in some additional simple steps

#### Step 1:

- Push the red point to the geographical location of your WS10 weather station
- If the WS10 weather station is close to a house with a postal address, you can also find your location by adding this address
- $\Rightarrow$  The coordinates and the height above sea level is automatically generated by the map

#### Step 2:

- On the next page, please add additional information. The only thing necessary is an entry in ,neighborhood'
- ,Station hardware' has to be set to ,other'

After a successful registration of your WS10 weather station, Weather Underground will send you a Station ID and a Station Password.

For your convenience and later use, you can note it here:

| Station ID       |  |
|------------------|--|
| Station Password |  |



Station ID and Station Password will be needed for the WS10 configuration.

# 7.3 Communication through COM1 / RS485

For the communication to the weather station WS10 you'll need the UMB-ConfigTool.Net software tool from Lufft.

The functionality and configuration of the UMB-ConfigTool.Net software tool is described in the online help of the tool. The online help can be used without internet connection.

With the UMB-ConfigTool.NET software tool you can completely configure the WS10.

#### 7.4 Communication Protocols

The command "PRT=<value>" reads/sets the used communication protocol based on the values shown in the table below:

| <value></value> | protocol      |  |  |
|-----------------|---------------|--|--|
| 0*)             | UMB-binary    |  |  |
| 5               | MODBUS-RTU    |  |  |
| 6               | MODBUS-ASCII  |  |  |
| 9               | UMB-ASCII 2.0 |  |  |

\*) factory setting



The change to another communication protocol will need a restart of the WS10 to take effect.

#### 7.4.1 UMB binary

UMB binary is the standard protocol used for configuration of the WS10 with the ConfigTool.NET. You'll find to documentation for download on the Lufft internet web site <u>www.Lufft.com</u>.

#### 7.4.2 UMB-ASCII 2.0

The messages of the UMB-ASCII 2.0 protocol are highly customizable. Therefore, you can change your messages to fit most of the data logger hardware.

| auto sending        | Send a message automatically in the configured interval                                        |
|---------------------|------------------------------------------------------------------------------------------------|
| interval            | Time in seconds between the automated sending of messages                                      |
| start character     | ASCII-char used as start sequence for a message<br>Factory setting: 2 / 02h (STX)              |
| end character       | ASCII-char used as end sequence for a message<br>Factory setting: 4 / 04h (EOT)                |
| decimal separator   | Char used as decimal separator<br>Factory setting: Point 46 / 2 Eh (".")                       |
| parameter separator | Char used as parameter separator<br>Factory setting: Semicolon 58 / 3 Bh (";")                 |
| block separator     | Char used as block separator<br>Factory setting: Colon 58 / 3Ah (":")                          |
| line end            | Char used for line end<br>Factory setting: CRLF (0Dh, 0Ah)<br>alternative CR (0Dh) or LF (0Ah) |

In this chapter it will only described the WS10 specific command SS.

A comprehensive UMB-ASCII 2.0 documentation you find under <u>www.lufft.com.</u>

| set 1 (metric)                       | set 2 (imperial)                        | Digits<br>before<br>decimal<br>point | Digits after decimal point | signed |
|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------|--------|
| Air temperature [°C]                 | Air temperature<br>[°F]                 | 2                                    | 1                          | yes    |
| Rel. air pressure [hPa]              | Rel. air pressure<br>[hPa]              | 4                                    | 1                          | no     |
| Rel. humidity [%]                    | Rel. humidity [%]                       | 2                                    | 1                          | no     |
| Dew point [°C]                       | Dew point [°F]                          | 2                                    | 1                          | yes    |
| Wind speed [m/s]                     | Wind speed<br>[mph]                     | 2                                    | 1                          | no     |
| Corr. Wind direction [°]             | Corr. Wind direction [°]                | 3                                    | 1                          | no     |
| Precipitation type (see chap. 0)     | Precipitation type (see chap. 0)        | 2                                    | 0                          | no     |
| Precipitation intensity<br>[mm/h]    | Precipitation<br>intensity [inch/h]     | 2                                    | 2                          | no     |
| Global radiation [W/m <sup>2</sup> ] | Global radiation<br>[W/m <sup>2</sup> ] | 4                                    | 0                          | no     |
| UV-Index                             | UV-Index                                | 2                                    | 0                          | no     |
| Brightness [kLx] Brightness [kLx     |                                         | 3                                    | 1                          | no     |

With the command SS you can inquire predefined standard sets:

#### 7.4.2.1 Command SS (standard-set request)

#### Syntax request:

< UMB-Address>:<RequestNr>:<SS>;<SetNum><CR><LF>

#### Syntax answer:

```
<STX>< UMB-Address>:<RequestNr>:<SS>;< SetNum>=<TelegrammNr>;<
Payload> :<Status>:<Checksum><CR><LF><EOT>
```

#### Example:

Request of standard-set 1:

Request:

7001:00:SS;1<CR><LF>

#### Anwser:

```
<STX>7001:00:SS;1=000;+23.8;0986.3;24.3;-
1.0;00.0;299.0;00:00:000;0000;00:000.1:00:0C <CR><LF><EOT>
```

#### Request of standard-set 2:

#### Request:

7001:00:SS;2<CR><LF>

#### Answer:

```
<STX>7001:00:SS;1=000;+74.9;0986.3;24.3;30.3;00.0;299.0;00;00.00;0000;00;000.1:00:FD
```

<CR><LF><EOT>

#### 7.4.3 Modbus

For a simpler integration of WS family Smart Weather Sensors into a PLC environment the Modbus communication protocol has been made available.

Measurement values are mapped to Modbus Input Registers. The range of values available is basically the same as for the UMB protocol, including different unit systems.

In the interest of simple and safe integration the use of register pairs for floating point values or 32 bit integers, which is not part of the Modbus standard, has not been applied. All measurement values are mapped to 16bit integers using suitable scaling factors.

#### 7.4.3.1 Modbus communication parameter

The Smart Weather Sensor can be configured for MODBUS-RTU or for MODBUS-ASCII.

The base configuration must be done using the UMB Config Tool.

When selecting MODBUS RTU or MODBUS-ASCII with the UMB Config Tool, communication parameters 19200 Bd, even parity, will be preselected.

| Modbus operating modes: | MODBUS-RTU, MODBUS-ASCII    |
|-------------------------|-----------------------------|
| Baud rate:              | 19200 (9600, 4800 or lower) |
| Interface Setting       | 8E1, 8N1, 8N2               |



The Modbus communication has been tested for a poll rate of 1 sec. The proper function of the Smart Weather Sensor with higher Modbus poll rates has not been tested.

We suggest to set the poll rate to 10 sec or slower, as, with the exception of the channels "wind speed / wind directions fast", which are provided for special purposes, the update rate of the data is >= 10sec. However, for most of the weather data, significant changes should be expected in the range of minutes.

#### 7.4.3.2 Addressing

The Modbus address is deducted from the UMB device ID.

A device with UMB device ID 1 also has the UMB address 1, etc.

The valid address range of Modbus from 1 to 247 is smaller than that of the UMB device IDs. If a UMB device ID > 247 has been selected, the Modbus address will be set to 247.

#### 7.4.3.3 Modbus functions

The functions of conformance class 0 and 1 have been implemented as far as they are applicable for the Smart Weather Sensor, i.e. all functions operating on register level.

|      | Conformance Class 0      |                                           |
|------|--------------------------|-------------------------------------------|
| 0x03 | Read Holding Registers   | Selected configuration settings           |
| 0x16 | Write Multiple Registers | Selected configuration settings           |
|      | Conformance Class 1      |                                           |
| 0x04 | Read Input Registers     | Measurement values and status information |
| 0x06 | Write Single Register    | Selected configuration settings           |
| 0x07 | Read Exception Status    | Currently not used                        |
|      | Diagnostics              |                                           |
| 0x11 | Report Slave ID          | (responds also to broadcast address)      |

#### 7.4.3.4 Holding Register

| Reg.<br>No. | Reg.<br>Addr | Function                     | Values                                                                              | Scale |
|-------------|--------------|------------------------------|-------------------------------------------------------------------------------------|-------|
| 1           | 0            | Local altitude               | Altitude in m, for calculation of relative air<br>pressure<br>Value range -100 5000 | 1.0   |
| 2           | 1            | Local altitude<br>adjustment | 0: Automatic via GPS<br>1: Manually                                                 | 10.0  |
|             |              |                              |                                                                                     |       |
| 4           | 3            | Station<br>longitude         | Value range -9090                                                                   | 100.0 |
| 5           | 4            | Station latitude             | Vaue range -180180                                                                  | 100.0 |
| 6           | 5            | UTC local time offset in min | Vaue range -720840                                                                  | 1     |
|             |              |                              |                                                                                     |       |
| 8           | 7            | Reset rainfall               | Function only when writing to the register, reading will give 0 always              | -     |
| 9           | 8            | Device reset                 | Function only when writing to the register, reading will give 0 always              | -     |

#### 7.4.3.4.1 Function 0x03 Read Holding Registers

The functions of conformance class 0 and 1 have been implemented as far as they are applicable for the Smart Weather Sensor, i.e. all functions operating on register level.

#### 7.4.3.4.2 Function 0x06 Write Holding Register, 0x10 Write Multiple Registers

By writing into the holding registers selected parameters of the Smart Weather Sensor can be adjusted through Modbus.

Register assignment see 7.5.3.4

Local altitude, compass deviation and averaging intervals are set by writing the new values into the related registers. Depending on the selected register the value must be scaled by the factor given in the table:

Example: for compass deviation, the table shows a scaling factor of 10.0. If the deviation is 4.8° a value of 48 shall be written into register 2 (reg.addr. 1).

The transmitted values will be checked for plausibility. Illegal values will not be accepted and cause a Modbus exception.

When writing the value 0x3247 (12871d) to register no. 8 (reg. addr. 7) the stored absolute rain amount will be set to 0. Subsequently a device reset will be initiated.

When writing the value 0x3247 (12871d) to register no. 9 (reg. addr. 8) a device reset will be initiated.

#### 7.4.3.5 Input Register

## 7.4.3.5.1 Measurement values - Status

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)               | Range             | Scaling      | <u>s</u> igned/ <u>u</u> nsigned, Remarks                                          |
|-------------|--------------|-----------------------------------|-------------------|--------------|------------------------------------------------------------------------------------|
| 1           | 0            | Identification                    |                   | 1            | unsigned                                                                           |
| 2           | 1            | Device status (low)               | 065535            | 1            | unsigned                                                                           |
| 3           | 2            | Device status (high)              | 065535            | 1            | unsigned                                                                           |
| Chan        | nel sta      | tus (State- and error code        | s according to UM | B-Binary-Pro | tocol definition)                                                                  |
| 4           | 3            | Sensor status<br>Temperature      | 0255              | 1            | unsigned                                                                           |
| 5           | 4            | Sensor status Humidity            | 0255              | 1            | unsigned                                                                           |
| 6           | 5            | Sensor status Air<br>pressure     | 0255              | 1            | unsigned                                                                           |
| 7           | 6            | Sensor status Wind                | 0255              | 1            | unsigned                                                                           |
| 8           | 7            | Sensor status<br>Precipitation    | 0255              | 1            | unsigned                                                                           |
| 9           | 8            | Sensor status Global radiation    | 0255              | 1            | unsigned                                                                           |
| 10          | 9            | Sensor status UV-Index            | 0255              | 1            | unsigned                                                                           |
| 11          | 10           | Sensor status<br>Brightness       | 0255              | 1            | unsigned                                                                           |
| 12          | 11           | Sensor status Compass             | 0255              | 1            | unsigned                                                                           |
| 13          | 12           | Sensor status position of the sun | 0255              | 1            | unsigned                                                                           |
| 14          | 13           | Sensor status GPS receiver        | 0255              | 1            | unsigned<br>For verficiation of GPS signal<br>please also check Reg. addr.<br>148. |
|             |              |                                   |                   |              |                                                                                    |
| 17          | 16           | UTC Time (low)                    | 065535            | 1            | [s], unsigned                                                                      |
| 18          | 17           | UTC Time (high)                   | 065535            | 1            | [s*65535], unsigned                                                                |
| 19          | 18           | Run time                          | 065535            | 10           | [s], unsigned                                                                      |

The identification register is coded as follows:

Byte[0] ...Software Version (e.g.: 10 -> Version 1.0)

Byte[1] ...Device subclass (for internal usage only)

The device status register offers an UMB coded error status of the devices. For further information to this error codes please refer to the UMB procotol documentation.

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)                    | Range                  | Scaling | signed/ <u>u</u> nsigned, Remarks |
|-------------|--------------|----------------------------------------|------------------------|---------|-----------------------------------|
| 20          | 19           | Air Temperature                        | -4060 °C               | 10      | signed                            |
|             |              |                                        |                        |         |                                   |
| 24          | 23           | Dewpoint Temperature                   | -4060 °C               | 10      | signed                            |
|             |              |                                        |                        |         |                                   |
| 30          | 29           | Relative Humidity                      | 0100 %                 | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 32          | 31           | Absolute Humidity                      | 0100 g/m³              | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 38          | 37           | Absolute Air Pressure                  | 3001100 hPa            | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 40          | 39           | Relative Air Pressure                  | 3001100 hPa            | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 46          | 45           | Wind Speed                             | 040 m/s                | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 50          | 49           | Wind Speed                             | 0144 km/h              | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 54          | 53           | Wind Direction                         | 0360°                  | 10      | unsigned                          |
| 55          | 54           | Wind Direction<br>(compass correction) | 0360°                  | 10      | unsigned                          |
| 56          | 55           | Compass Direction                      | 0360°                  | 10      | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 60          | 59           | Precipitation                          | 0655,3 mm              | 100     | unsigned                          |
| 61          | 60           | Precipitation diff.                    | 0100 mm                | 100     | unsigned                          |
| 62          | 61           | Precipitation Type                     | 0255                   | 1       | unsigned                          |
| 63          | 62           | Precipitation Intensity                | 0100 mm/h              | 100     | unsigned                          |
| 64          | 63           | Precipitation Intensity                | 01,6667<br>mm/min      | 10000   | unsigned                          |
| 65          | 64           | Daily Precipication                    | 0655,3 mm<br>mm        | 100     | unsigned                          |
|             |              |                                        |                        |         |                                   |
| 69          | 68           | Global Radiation                       | 01500 W/m <sup>2</sup> | 10      | unsigned                          |

# 7.4.3.5.2 Measurement values - Metric

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)              | Range    | Scaling | signed/ <u>u</u> nsigned, Remarks |
|-------------|--------------|----------------------------------|----------|---------|-----------------------------------|
|             |              |                                  |          |         |                                   |
| 71          | 70           | Position of the sun<br>Azimuth   | 0360 °   | 10      | Unsigned                          |
| 72          | 71           | Position of the sun<br>Elevation | 090 °    | 10      | Unsigned                          |
|             |              |                                  |          |         |                                   |
| 75          | 74           | UV-Index                         | 020      | 1       | unsigned                          |
| 76          | 75           | Brightness                       | 0160 klx | 10      | unsigned                          |
| 77          | 76           | Twilight                         | 0500 lx  | 10      | unsigned                          |

# 7.4.3.5.3 Measurement values - Imperial

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)                    | Range        | Scaling | signed/ <u>u</u> nsigned, Remarks |
|-------------|--------------|----------------------------------------|--------------|---------|-----------------------------------|
| 80          | 79           | Air Temperature                        | -40140 °F    | 10      | signed                            |
|             |              |                                        |              |         |                                   |
| 84          | 83           | Dewpoint Temperature                   | -40140 °F    | 10      | signed                            |
|             |              |                                        |              |         |                                   |
| 90          | 28           | Relative Humidity                      | 0100 %       | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 92          | 91           | Absolute Humidity                      | 0100 g/m³    | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 98          | 97           | Absolute Air Pressure                  | 3001100 hPa  | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 100         | 99           | Relative Air Pressure                  | 3001100 hPa  | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 106         | 105          | Wind Speed                             | 089,4775 mph | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 110         | 109          | Wind Speed                             | 077,7538 kts | 10      | unsigned                          |
|             |              |                                        |              |         |                                   |
| 114         | 113          | Wind Direction                         | 0359°        | 10      | unsigned                          |
| 115         | 114          | Wind Direction<br>(compass correction) | 0359°        | 10      | unsigned                          |
| 116         | 115          | Compass Direction                      | 0359°        | 10      | unsigned                          |

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)              | Range                  | Scaling | signed/ <u>u</u> nsigned, Remarks |
|-------------|--------------|----------------------------------|------------------------|---------|-----------------------------------|
|             |              |                                  |                        |         |                                   |
| 120         | 119          | Precipitation                    | 065,53 in              | 1000    | unsigned                          |
| 121         | 120          | Precipitation diff.              | 03,973 in              | 10000   | unsigned                          |
| 123         | 122          | Precipitation Intensity          | 03,973 in/h            | 10000   | unsigned                          |
| 124         | 123          | Precipitation Intensity          | 00,06561<br>in/min     | 100000  | unsigned                          |
| 125         | 124          | Daily Precipitation              | 065,53<br>in           | 1000    | unsigned                          |
|             |              |                                  |                        |         |                                   |
| 129         | 128          | Global Radiation                 | 01500 W/m <sup>2</sup> | 10      | unsigned                          |
|             |              |                                  |                        |         |                                   |
| 131         | 130          | Position of the sun<br>Azimuth   | 0359 °                 | 10      | Unsigned                          |
| 132         | 131          | Position of the sun<br>Elevation | 090 °                  | 10      | Unsigned                          |
|             |              |                                  |                        |         |                                   |
| 135         | 134          | UV-Index                         | 020                    | 1       | unsigned                          |
| 136         | 135          | Brightness                       | 0160 klx               | 10      | unsigned                          |
| 137         | 136          | Twilight                         | 0500 lx                | 10      | unsigned                          |

| Reg.<br>Nr. | Reg.<br>Adr. | Value (UMB Channel)                | Range        | Scaling | signed/ <u>u</u> nsigned, Remarks |
|-------------|--------------|------------------------------------|--------------|---------|-----------------------------------|
| 140         | 139          | Supply Voltage                     | 050 V        | 10      | unsigned                          |
| 141         | 140          | Run Time (overall)                 | 03931800 s   | 1/60    | unsigned                          |
| 142         | 141          | Heater status                      | 01           | 1       | unsigned                          |
|             |              |                                    |              |         |                                   |
| 143         | 142          | Position Longitude                 | -180180 °    | 100     | signed                            |
| 144         | 143          | Position Latitude                  | -9090 °      | 10      | signed                            |
| 145         | 144          | Position Height Above<br>Sea Level | -100010000 m | 1       | signed                            |
|             |              |                                    |              |         |                                   |
| 146         | 145          | Wifi status                        | 065535       | 1       | unsigned<br>(see chap. 0)         |
| 147         | 146          | Wifi signal strenth                | -3276832767  | 1       | signed<br>(see chap. 4.14.2)      |
|             | 1            |                                    |              |         |                                   |
| 148         | 147          | GPS satellites received            | 0255         | 1       | unsigned                          |
| 149         | 148          | GPS Position locked                | 0255         | 1       | unsigned                          |
| 150         | 149          | Boot count                         | 065535       | 1       | unsigned                          |
| 151         | 150          | CPU load                           | 065535       | 1       | unsigned                          |

#### 7.4.3.5.4 Measurement values - Service

#### 7.4.3.6 Function 0x04 Read Input Registers

The input registers are containing the measurement values of the Smart Weather Sensor and the related status information.

The measurement values are mapped to the 16bit registers using scaling factors (0 ... max. 65530 for unsigned values, -32762 ... 32762 for signed values).

Values 65535 (0xffff) resp. 32767 are used for the indication of erroneous or not available measurement values. A more detailed specification of the error can be evaluated from the status registers.

The assignment of values to the available register addresses  $(0 \dots 124)$  has been arranged in a way so that the user can read the most frequently used data with few (ideally only one) register block requests

Following blocks have been defined:

- Status information
- Frequently used values which are independent of the unit system (met./ imp.) in use
- Frequently used values in metric units
- Frequently used values in imperial units
- Other measurement values

When using the metric unit system, the first three blocks can the supply all data usually required with one request.

There is no difference in the register assignment between the sub types of the WS family. If, dependent on the type, some value is not available, this will be indicated by setting the register to the error value.

For detailed information about measurement ranges, units etc. please refer to the related description of the UMB.

#### 7.5 Maintanance

There is no need to regularly service the WS10.

However, if there is an accumulation of dirt on the WS10 surface, especially on the glass you should clean the surface.



To clean the glass you must only use water and dishwashing detergent. Don't use any other detergent containing alcohol or any other acid.

# 8 Declaration of Conformity

#### 8.1 EC Certificate of Conformity

Product: Smart Weather Sensor

Type: WS10 (Order No.: 8368.WS10P)

We herewith certify that the above-mentioned equipment complies in design and construction with the Directives of the European Union and specifically the EMC Directive in accordance with 2004/108/EC, the RoHS Directive 2011/65/EU and, where required, Directive 2014/53/EU.

The complete Certificate of Conformity is available for download from the Lufft website <u>www.lufft.com</u>.

## 8.2 WS10 FCC Compliance Statement (US)

Product: Smart Weather Sensor

Type: WS10 (Order No.: 8368.WS10P)

This device contains FCCID: UF9WS100.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes and modifications not expressly approved by manufacturer could void the user's authority to operate the equipment.

## 8.3 WS10 IC Compliance Statement (CA)

Product: Smart Weather Sensor

Type: WS10 (Order No.: 8368.WS10P)

This equipment contains equipment certified under ICID: 6650A-WS010.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) This device may not cause interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicable aux appareils radio exempts de licence.

L'exploration est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le bouillage est susceptible d'en compromettre le fonctionnement.

# 8.4 WS10 EN 300 440 Compliance Statement

Product: Smart Weather Sensor

Type: WS10 (Order No.: 8368.WS10AP)

This equipment contains equipment certified according to EN 300 440 for short range radio devices used in the 1GHz to 40GHz frequency range.

The radiation power is limited to 20mW.

# 9 Disposal

The disposal of this device has to be according to the European Union directive 2012/19/EU. Waste equipment must not be disposed of as household waste. The device should be recycled according to the electronic waste guidelines of the respective country.

# **10 Error handling and Error Codes**

# **10.1 Error handling**

| Error                                               | Action                                                                                                                 |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Device does not start up                            | Check if you connected the device according to the specification.<br>Check pinout and polarity of your supply voltage. |
| Device does not start despite existing power supply | Check whether the device supply line is connected to the correct power supply.                                         |

## 10.2 Status LED

| LED                                   | Meaning                                                                                                                                                                                                                        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red – Green – Blue - White            | Normal start up                                                                                                                                                                                                                |
| Red slowly blinking                   | <ul> <li>Hardware defect</li> <li>→ Disconnect the device from the supply voltage for approx. 5min. and put it back into operation.</li> <li>→ If the error is displayed again, send the device to the manufacturer</li> </ul> |
| White slowly blinking                 | Configuration error $\rightarrow$ Check the device configuration                                                                                                                                                               |
| Green short blink every 10 sec        | WS10 in Wi-Fi access mode                                                                                                                                                                                                      |
| Blue - Green short blink every 10 sec | WS10 in Wi-Fi access mode forced through configuration pin                                                                                                                                                                     |

#### 10.3 Error codes UMB

| Status | Definition    | Description     |
|--------|---------------|-----------------|
| 00h    | ОК            | No Error        |
| 20h    | LESE_ERR      | Reading Error   |
| 23h    | UNGLTG_ADRESS | Invalid Address |
|        |               |                 |

A detailed UMB documentation can be found on the internet under www.lufft.com

# **11 Technical Data**

# 11.1 Electrical Data

| Supply Voltage      | 936 V DC                         |  |  |
|---------------------|----------------------------------|--|--|
| Current Consumption | 850 mA bei 9 V / 230 mA bei 24 V |  |  |
| Dome heating        | 24 VA @ 24VDC                    |  |  |
| Maximum input power | 32,5 VA @ 24 VDC                 |  |  |
| Fuse supply Voltage | 2,5 A (slow blow)                |  |  |
| Protection Class    | IP 66                            |  |  |

# **11.2 Measurements**

| Air Temperature         | Range             | - 40 60 °C                                                                                                    |
|-------------------------|-------------------|---------------------------------------------------------------------------------------------------------------|
|                         | Accuracy          | $\pm$ 1,0 °C (-5 +25 °C, Wind > 2m/s),<br>otherwise < $\pm$ 2,0 °C, with inactive dome heating                |
| Relative Humidity       | Range             | 0 100 %                                                                                                       |
|                         | Accuracy          | ±5% (@ 20°C and < 80% rH)                                                                                     |
| Air Pressure            | Range             | 500 … 1100 hPa                                                                                                |
|                         | Accuracy          | ±0,5 hPa (at room temperature 25 °C)                                                                          |
| Wind Speed              | Range             | 0 40 m/s                                                                                                      |
|                         | Accuracy          | ±1 m/s or 5 %, the larger value is valid                                                                      |
| Wind Direction          | Range             | 0 360°                                                                                                        |
|                         | Accuracy          | ± 10°                                                                                                         |
| Precipitation Amount    | Range<br>Accuracy | 0 10000 mm<br>±2 mm or 20 % under laboratory conditions, the<br>larger value is valid. Observation period 24h |
| Precipitation Intensity | Range             | 0 30 mm/h                                                                                                     |
|                         | Accuracy          | 20 % under laboratory environment                                                                             |
| Precipitation Type      | Range             | Rain, Snow, Sleet, Freezing Rain, Hail                                                                        |
| Global Radiation        | Range             | 0 1300 W/m²                                                                                                   |
|                         | Accuracy          | 10% or ±120 W/m², larger value is valid                                                                       |
| UV-Index                | Range             | 0 13                                                                                                          |
| Brightness              | Range             | 0 120 klx                                                                                                     |
|                         | Accuracy          | ±5 % of measured value                                                                                        |
| Twilight                | Range             | 0 500 lx                                                                                                      |
|                         | Accuracy          | ±10 lx                                                                                                        |

# **11.3 Interfaces**

| Wired     | RS485 2-wire, 5 V                      |
|-----------|----------------------------------------|
| Baud rate | 9600…115200 Baud (Standard 19200 Baud) |
| WLAN      | 802.11:b/g/n                           |

# 11.4 Mechanical data



| Dimensions (L x B x H) | 227 mm x 145 mm x 130 mm |
|------------------------|--------------------------|
| Weight                 | 0,5 kg                   |
| Tube size (D)          | 35 mm                    |

# **11.5 Environmental Conditions**

| Operating Conditions | -40 °C+60 °C               |  |  |
|----------------------|----------------------------|--|--|
| Storage Conditions   | -60 °C+85 °C               |  |  |
| Humidity             | 0100 % rH (non condensing) |  |  |

# **12 Appendix**

| PartNr.     | Countries                                  | Frequency           | Power |
|-------------|--------------------------------------------|---------------------|-------|
| 8368.WS10P  | EU<br>All members of the<br>European Union | 24.000 - 24.075 GHz | 100mW |
|             | Swiss                                      | 24.000 - 24.075 GHz | 100mW |
|             | Island                                     | 24.000 - 24.075 GHz | 100mW |
|             | Norway                                     | 24.000 - 24.075 GHz | 100mW |
|             | USA                                        | 24.075 - 24.175 GHz | 100mW |
|             | Canada                                     | 24.075 - 24.175 GHz | 100mW |
| 8368.WS10AP | China                                      | 24.000 – 24.250 GHz | 20mW  |

# **12.1 Approved Countries for precipitation radar**

The correct radar frequency is automatically adjusted by the position reading through the GPS module.

The use of the radar function of the WS10 in all other regions besides the above mentioned list is not allowed.

# **13 Contact**

For warranty and repair, please contact: **G. Lufft Mess- und Regeltechnik GmbH** Gutenbergstraße 20 D-70736 Fellbach Tel: +49(0)711-51822-0 Fax: +49(0)711-51822-41 Mail: info@lufft.de www.lufft.de