Manuel d'utilisation Lufft CHM 15k Célomètre

Sommaire

1	Info	Informations générales4			
	1.1	Symboles utilisés	5		
2	Séc	urité	5		
	2.1	Normes et directives	5		
	2.2	Instructions de sécurité pour le système laser	5		
	2.3	Exigences concernant le personnel	5		
	2.4	Instructions de sécurité pour le transport, l'installation, la mise en service et le nettoyage	5		
	2.5	Description des avertissements	6		
	2.5.1	Description des symboles d'avertissement	6		
	2.5.2	Description des mises en garde	6		
	2.6	Marquage de sécurité sur le CHM 15k	7		
	2.7	Utilisation conforme	7		
3	Car	actéristiques techniques	8		
	3.1	Informations de commande	8		
	3.2	Caractéristiques techniques	8		
4	Des	cription technique	11		
	4.1	Construction du CHM 15k	11		
	4.2	Unités fonctionnelles du boîtier intérieur	12		
	4.2.1	Schéma fonctionnel	13		
	4.2.2	Contrôle fonctionnel et état de l'appareil	14		
5	Tra	nsport et étendue des fournitures	15		
6	Inst	allation	16		
	6.1	Installation du CHM 15k	16		
	6.1.1	Travail préparatoire	16		
	6.1.2	Installation sur le socle	17		
	6.2	Installation électrique	19		
7	Mis	e en service et retrait du service	23		
	7.1	Mise en service avec la connexion RS485	23		
	7.2	Mise en service avec la connexion LAN	24		
	7.3	Retrait du service	25		
	7.4	Mise au rebut	26		
8	Cor	nmunication via RS485 et Ethernet	27		
	8.1	Liste des paramètres pouvant être définis	27		
	8.2	Configuration de l'appareil avec RS485	32		
	8.2.1	Lecture d'un paramètre	33		
	8.2.2	Définition d'un paramètre	33		
	8.2.3	Modification du débit en bauds	33		
	8.2.4	Redémarrage du système Linux embarqué/réglages usine	34		
	8.2.5	Modification des paramètres de temps	34		
	8.3	Interrogation de données RS485	35		
	8.3.1	Modeinterrogation	35		
	8.3.2	Mode de sortie automatique	36		
	8.3.3	Télégramme de données standard	36		
	8.3.4	Télégramme de données étendu	37		
	8.3.5	Télégramme de données brutes	41		
	8.3.6	Autres télégrammes de données	42		

8.4	Structure du format NetCDF	42			
8.4.1	Général	42			
8.4.2	Principes de base	43			
8.4.3	Noms de fichiers	43			
8.4.4	Structure du format	43			
8.5	Codes d'état	48			
8.5.1	Codes d'état croissants	49			
8.6	Mise à jour du firmware				
8.7	Communication via l'interface Web Ethernet	53			
8.7.1	Vue d'ensemble de l'appareil et droits d'accès (onglet Device)	53			
8.7.2	Accès aux données de mesure (fichiers NetCDF, visionneuse)	54			
8.7.3	Configuration du CHM 15k (onglet Config)	54			
8.7.4	Messages d'erreur et d'état (onglet Process Warnings)	57			
8.7.5	Serveur de temps				
8.8	Mode AFD	58			
8.9	Télégramme via Ethernet	60			
8.10	Outils de fichiers NetCDF	60			
9 Éva	Iluation des données / algorithme SCA	61			
9.1	Télédétection laser	61			
9.2	Préparation des données mesurées	61			
9.3	Limite inférieure des nuages et profondeur de pénétration	62			
9.4	Profondeur de pénétration des nuages	62			
9.5	Paramètres pour l'évaluation des données	63			
9.6	Détermination de la portée de détection maximale (MXD)	63			
9.7	Méthode pour déterminer la visibilité verticale (VOR)	63			
9.8	Précipitations et brouillard	64			
9.9	Hauteur de la couche de mélange	64			
9.10	Niveau de couverture (BCC / TCC)	64			
9.11	Indice SCI (Sky Condition Index, indice d'état du ciel)	67			
10 Ins	tructions relatives au nettoyage, à la maintenance et à l'entretien	68			
10.1	Nettoyage	68			
10.2	Intervalles et mesures de maintenance	70			
11 Anr					
11.1	Version materielle du CHM 15k				
11.2	Version du logiciel du CHM 15k				
12 Ind	12 Index des figures				
13 Index des tableaux					

1 Informations générales

Le présent manuel d'utilisation fait partie intégrante de l'équipement. Conservezle toujours à proximité de ce dernier afin de pouvoir y accéder rapidement en cas de besoin.

Il doit être lu, assimilé et respecté en tous points par les personnes qui sont responsables de l'équipement et celles qui s'en servent. Cela concerne en particulier la section « Sécurité ».

Fin de la rédaction : Juillet 2019

Référence du document : 8350.MEP

Le présent manuel d'utilisation concerne les versions suivantes de l'équipement : CHM 15k avec les numéros de commande suivants :

> 8350.00 8350.10 8350.01 8350.B050 8350.01-BW 8350.03

Fabricant

G. Lufft Mess- und Regeltechnik GmbH Gutenbergstraße 20 70736 Fellbach, Allemagne Téléphone +49 711 518 22 – 831 Fax +49 711 518 22 – 41 E-mail <u>service@lufft.de</u>

Date	Version	Remarques		
Juillet 2015	R06	Remaniement de tous les chapitres		
Juillet 2016	R07	Résolution d'erreurs mineures		
Novembre 2016	R09	Firmware 0.743, remaniement de tous les chapitres		
Mai 2017	R10	Modifications concernant la sécurité laser		
Juillet 2019	R13	Révision complète, notamment des instructions de sécurité		

Copyright

© 2019

Ce manuel est protégé par le droit d'auteur Aucune partie de ce manuel ne peut être reproduite par quelque moyen que ce soit (photographie, photocopie, microfilm ou toute autre méthode) ni traitée, dupliquée ou distribuée à l'aide de systèmes électroniques sans l'accord écrit de G. Lufft GmbH. Les infractions donneront lieu à des poursuites.

Tout le soin requis a été apporté à la rédaction de ce manuel. Nous excluons toute responsabilité pour les dommages résultant du non-respect des informations contenues dans ce manuel.

1.1 Symboles utilisés

Remarques pour une utilisation sans heurts de l'équipement

Mesure requise

2 Sécurité...

2.1 Normes et directives

L'appareil est conçu selon les règles reconnues en matière de technologie et de sécurité, et il est fabriqué en série sans modifications. Les règles qui s'appliquent sont répertoriées dans la déclaration de conformité actuellement en vigueur. Les déclarations de conformité peuvent être téléchargées depuis notre page d'accueil :

https://www.lufft.com/products/cloud-height-snow-depth-sensors-288/ceilometer-chm-15k-nimbus-2300/

2.2 Instructions de sécurité pour le système laser

Le célomètre CHM 15k fait partie des produits laser de la classe 1M selon l'IEC 60825-1:2014-06. Il est conforme à la norme 21 CFR 1040.10, avec les exceptions indiquées dans la Notice Laser N° 50 datée du 24 juin 2007. Le capteur émet un faisceau de rayonnement laser invisible (1064 nm) avec de petits écarts (< 0,5 mrad) et un diamètre de faisceau de 90 mm. Une étiquette d'avertissement est fixée à l'avant de l'appareil (voir la section 2.6).

Le rayonnement laser de la classe 1M est considéré comme sans danger, sauf lorsqu'il est observé à travers une optique de télescope. L'instrument ne peut être utilisé que dans une zone extérieure protégée. Les précautions suivantes doivent être prises lors de son utilisation :

- Ne jamais observer le faisceau laser à travers des instruments optiques, notamment des jumelles
- Ne pas regarder directement dans le faisceau laser
- Ne pas utiliser l'instrument lorsque la porte intérieure du boîtier est ouverte
- Ne pas utiliser le capteur à l'horizontale (angle maximum d'inclinaison 20°)
- Aucun matériau réfléchissant ne doit se trouver sur le trajet du faisceau

Le rayonnement laser émis par le célomètre CHM 15k est généré par un laser intégré de la classe 3B. Une exposition à un rayonnement laser de la classe 3B, même brève, peut provoquer des blessures aux yeux ou sur la peau. La maintenance et l'entretien du capteur doivent être confiés à un personnel qualifié. En aucun cas la tête laser ne doit être retirée de l'unité de mesure optique.

2.3 Exigences concernant le personnel

- L'installation et la mise en service du CHM 15k doivent être effectuées par un personnel qualifié et familiarisé avec les techniques de sécurité. Le raccordement électrique du CHM 15k ne doit être réalisé que par un électricien qualifié.
- Les travaux de maintenance et de réglage sur le CHM 15k doivent être assurés par le personnel de service de G. Lufft GmbH ou par un personnel du client dûment habilité et formé.
- Toute personne affectée à l'installation et la mise en service du CHM 15k doit avoir lu et compris l'intégralité du manuel d'utilisation.
- Pendant tous les travaux sur l'instrument, le personnel ne doit pas être en état de fatigue excessive, ni sous l'influence d'alcool, de médicaments ou de stupéfiants. Le personnel ne doit pas présenter des handicaps physiques qui limitent temporairement ou définitivement son attention et son jugement.

2.4 Instructions de sécurité pour le transport, l'installation, la mise en service et le nettoyage

- Le CHM 15k doit être chargé et transporté emballé et dans la position de transport (voir Figure 5), à l'aide des dispositifs de levage et des moyens de transport appropriés.
- À l'intérieur du véhicule de transport, le CHM 15k emballé doit être correctement protégé contre les glissades, les chocs et les coups, p. ex., au moyen de sangles.

- Si le CHM 15k n'est pas installé immédiatement, il doit être stocké dans un lieu suffisamment sécurisé, à l'abri des influences extérieures.
- L'installation du CHM 15k nécessite la présence d'au moins deux personnes.
- Une fois le CHM 15k installé, il est nécessaire de le contrôler et de vérifier qu'aucune modification affectant la sécurité n'y a été apportée.
- La porte intérieure du boîtier ne doit être ouverte que par le personnel de service de G. Lufft GmbH ou par le personnel habilité et formé du client.
- Ne jamais utiliser le CHM 15k avec une fenêtre endommagée ; renvoyé l'appareil à G. Lufft pour réparation.
- Risque d'explosion : ne pas installer le CHM 15k dans des zones exposées à un risque d'explosion

2.5 Description des avertissements

2.5.1 Description des symboles d'avertissement

Symbole	Utilisation
	Avertissement relatif à un risque général
	Avertissement relatif au faisceau laser
4	Avertissement relatif à une tension électrique dangereuse
	Avertissement relatif à une surface chaude
	Conformément à la loi sur les équipements électriques et électroniques, G. Lufft GmbH récupère les appareils usagers dans les États membres de l'UE et se charge de leur mise au rebut. Les équipements concernés sont repérés par ce symbole.

2.5.2 Description des mises en garde

Indique une situation dangereuse qui, si elle n'est pas évitée, est susceptible de provoquer la mort ou des blessures graves.

ATTENTION

Indique une situation dangereuse qui, si elle n'est pas évitée, est susceptible de provoquer des blessures légères ou modérées.

REMARQUE

Indique une situation qui, si elle n'est pas évitée, est susceptible de provoquer des dommages sur l'instrument.

2.6 Marquage de sécurité sur le CHM 15k

La Figure 1 présente le marquage de sécurité sur l'appareil. La plaque signalétique et le raccordement du conducteur de terre sont situés à l'arrière du socle du boîtier.

Figure 1 Marquage de sécurité.

2.7 Utilisation conforme

La sécurité de fonctionnement du CHM 15k n'est garantie que si l'instrument est utilisé conformément aux instructions du présent manuel.

L'instrument est conçu pour fonctionner en monophasé sur un réseau basse tension public en conformité avec la norme IEC38, 6e édition, 1983.

Le célomètre peut être utilisé avec un angle d'inclinaison inférieur ou égal à 20°. Toute utilisation au-delà de cette limite est considérée comme non conforme ! L'opérateur est seul tenu responsable des dommages qui pourraient en résulter.

Une utilisation à l'horizontale représente un risque de sécurité pour les tiers et doit être expressément exclue. Pour un fonctionnement parfait, un cycle de nettoyage et de maintenance régulier doit être respecté (voir chapitre 10).

3 Caractéristiques techniques

3.1 Informations de commande

Versions des équipements					
Numéro de commande	Description	Alimentation	Longueur du câble		
8350.00	CHM 15k EU Base	230 VCA ±10 %	10 m		
8350.01	CHM 15k EU + modem DSL	230 VCA ±10 %	3 m		
8350.01-BW	CHM 15k EU + modem DSL + code d'identification AIT	230 VCA ±10 %	3 m		
8350.03	CHM 15k EU + prêt pour DSL	230 VCA ±10 %	10 m		
8350.10	CHM 15k US/CA	115 VCA ±10 %	10 m		
8350.B050	CHM 15k EU Base	230 VCA ±10 %	50 m		

Tableau 1 Versions des équipements.

Remarque générale : la longueur standard est de 10 m pour le câble RS485, le câble LAN (ou DSL) et le câble d'alimentation. DSL et la batterie de secours sont des options, également disponibles pour la version 115 VCA de l'instrument.

3.2 Caractéristiques techniques

Paramètres mesurés				
Plage de mesure	0 m à 15 km (0 à 50 000 ft)			
Portée de détection des nuages	10 m à 15 km (33 à 50 000 ft)			
Résolution (mesurée)	5 m			
Résolution des données NetCDF (*)	5 m – 30 m par pas de 5 m (peut être paramétré par l'utilisateur) 15 m (valeur par défaut)			
Données NetCDF haute résolution	5 m (défini pour un vecteur HR limité dans NetCDF)			
Temps d'enregistrement et cycle de reporting (*)	2 s à 600 s (programmable) Valeur par défaut : 15 s			
Objets de mesure	Aérosols, nuages (gouttelettes, cristaux de glace)			
Paramètres mesurés/définis	Profils de rétrodiffusion Hauteurs des nuages jusqu'à 9 couches, y compris profondeur de pénétration (épaisseur nuageuse), portée de détection maximale (MXD), visibilité verticale (VOR), indice d'état du ciel (SCI, Sky Condition Index), niveau de couverture (TCC, BCC),			
Principe de mesure	Lidar (optique, temps de propagation de la lumière)			
Paramètres optiques				
Source lumineuse	Nd : laser à état solide YAG, pompé par diode			
Longueur d'onde	1064 nm			
Largeur de bande	0,1 nm			
Puissance de sortie Pavg (max)	59,5 mW			
Taux de répétition des impulsions	5 – 7 kHz			
Durée d'impulsion	1 ns			
Divergence du faisceau	<0,5 mrad			
Largeur de bande du filtre	1 nm			

Stabilité à long terme sur plus de 12 mois (taux de répétition des impulsions)	<10 %			
Champ de vision (FOV) du récepteur	0,45 mrad			
Distance nominale de risque oculaire (DNRO) étendue	1 km (pour une ouverture de 50 mm)			
Interfaces de données				
Interfaces standard	RS485 semi-duplex (ASCII) ; LAN (http, (S-)FTP, NetTools)			
Interfaces en option	DSL, RS232 (service)			
Paramètres électriques				
Alimentation	230 VAC ±10 % <u>ou</u> 115 VCA ±10 %			
Fréquence de ligne	50 Hz, 60 Hz			
Consommation électrique	Max. 800 VA avec chauffage du boîtier (par défaut) ; Max 300 VA sans chauffage du boîtier			
Consommation électrique en W (dépend de la tension secteur)	Chauffage de l'unité de mesure : 250 W @115 / 230 VCA Chauffage du boîtier : 450 W @115/ 230 VCA			
Fonction d'alimentation sans interruption (UPS) (en option)	Batterie de secours interne pour l'électronique (> 1 heure)			
Sécurité de l'équipement				
Exigences environnementales	ISO 10109-11			
Classe de protection laser	1M selon IEC 60825-1:2014, correspond à CFR 1040.10			
Classe de protection	IEC/ EN 60529 : IP 65 ; IEC/EN 61010-1 : IK06 (1 joule)			
Classe de protection	Classe de protection I (conducteur neutre requis)			
Catégorie de surtension				
Niveau de pollution dans le boîtier IP65	2			
CEM	EN 61326 classe B (domaine industriel)			
Conformité	CE			
Conditions de fonctionnemen	t			
Plage de températures	-40 °C à +50 °C			
Humidité relative	0% – 100%			
Vent	60 m/s			
Altitude maximale de fonctionnement	2000 m			
Mesures				
Dimensions du boîtier (empreinte x hauteur)	I x H x L = 0,5 m x 0,5 m x 1,55 m			
Dimensions de l'emballage	I x H x L = 0,75 m x 0,86 m x 1,80 m			
Poids				
Poids	70 kg (système complet)			
	9,5 kg (unité de mesure – pièce de remplacement la plus lourde)			
Exigences relatives à l'installation				
Réseaux de distribution basse tension appropriés	Système TN-S : réseau avec liaison à la terre, boîtier CHM 15k mis à la terre, conducteurs neutre et de protection séparés Système TN-C-S : boîtier CHM 15k mis à la terre, conducteurs neutre et de protection combinés en un même conducteur en dehors du CHM 15k, mais introduits dans le boîtier et connectés séparément			
Type de connexion	Connexion fixe, mise à la terre au moyen d'une borne de mise à la terre (voir Figure 12)			

Mesures à prendre par l'opérateur				
Protection contre la foudre	 Protection interne contre la foudre fournie Système de protection extérieure contre la foudre conforme à DIN V VDE 0185-3 en option 			
Mise à la terre	Dispositif de mise à la terre conforme à DIN V VDE 0185-3			
Conditions requises pour une installation extérieure	 Dispositif de séparation pour la déconnexion du réseau basse tension à proximité du CHM 15k Facilement accessible Marqué comme appartenant au CHM 15k Fusible amont adapté à une section de câble ≥ 6 A, B ou C. 			

Tableau 2 Données techniques.

(*) la combinaison d'une résolution temporelle et d'une résolution spatiale élevées sur la plage entière est limitée par la taille de fichier et le temps de traitement. Exemple : résolution de 15 m sur une portée de 15 km avec une résolution temporelle de 15 s \rightarrow taille de fichier journalier de 24 Mo (notre mode de fonctionnement par défaut) ; une combinaison d'une résolution de 5 m sur l'ensemble de la plage de 15 km et d'une résolution temporelle de 2 s aboutirait à des fichiers journaliers >500 Mo. Aucune combinaison de tailles de fichier NetCDF >100 Mo n'est prise en charge par Lufft.

4 **Description technique**

Le télémètre de nuages CHM 15k est utilisé principalement pour mesurer la hauteur des nuages, la profondeur de pénétration des nuages, le niveau de couverture, la visibilité verticale et la couche d'aérosol. Les données calculées sont transférées par transmission à distance via des interfaces numériques standard.

Le CHM 15k utilise la méthode Lidar comme principe de mesure (Lidar : light detection and ranging) : de brèves impulsions lumineuses générées par un laser à état solide à micropuce sont émises dans l'atmosphère, où elles sont diffusées par les aérosols, les gouttelettes et les molécules d'air. La portion de la lumière qui est renvoyée vers le célomètre est analysée plus en détail. Le temps de propagation des impulsions laser est mesuré et utilisé pour calculer la distance de 'événement de diffusion.

Le profil de hauteur du signal rétrodiffusé est analysé pour calculer l'intensité rétrodiffusée β_{raw} en tant que premier paramètre de sortie de l'instrument. À partir de β_{raw} , le coefficient de rétrodiffusion atténuée β_{att} peut être calculé à l'aide d'une constante de calibrage valable pour les instruments CHM 15k. Les différents paramètres cibles tels que les hauteurs de des nuages et de la couche d'aérosol sont calculées à partir de ces données.

Le système de détection CHM 15k est basé sur une méthode de comptage des photons. Tel qu'il est intégré dans le CHM 15k, il ne peut être utilisé qu'en combinaison avec un laser. La largeur de bande étroite du laser permet d'utiliser un filtre de largeur de bande d'1 nm (ou moins) devant le détecteur, qui est nécessaire pour supprimer l'éclairage de fond de manière efficace et permettre le moyennage des données sur plusieurs minutes. Le moyennage des signaux en vue d'atteindre un certain rapport signalbruit est déterminant pour les mesures Lidar, qui génèrent des profils d'aérosol. Par rapport aux techniques de mesure analogiques, les avantages de cette méthode sont une précision de la détection et une sensibilité très élevées. La technique est également efficace contre les perturbations dans le signal.

Le célomètre CHM 15k est :

- un instrument compact comprenant des ventilateurs pour le chauffage et les fenêtres ;
- capable de fonctionner dans les conditions ambiantes spécifiées dans les données techniques (voir 3 Caractéristiques techniques);
- de conception modulaire ; l'unité de mesure laser (LOM ou module optique laser), p. ex., à l'intérieur de l'instrument peut être remplacé sur le terrain ;
- un appareil conçu pour fonctionner 24 heures sur 24, 7 jours sur 7.

4.1 Construction du CHM 15k

Le boîtier du CHM 15k est fabriqué dans un aluminium résistant à la corrosion et constitué d'une double coque.

La coque extérieure est destinée à atténuer les influences extérieures :

- du rayonnement solaire,
- du vent,
- de la pluie et
- de la neige

sur le boîtier intérieur, dans lequel se trouve l'unité de mesure. L'effet de cheminée entre la coque extérieure et le boîtier intérieur prend en charge ce processus.

Le capot du boîtier protège le boîtier intérieur contre la poussière et les précipitations.

Il contient l'ouverture pour la sortie et l'entrée du faisceau laser. La cloison de séparation dans le capot dissocie la zone émettrice de la zone réceptrice sensible. Un déflecteur d'air à l'intérieur du capot dirige le flux d'air des deux ventilateurs directement vers les fenêtres en verre du boîtier intérieur.

Le boîtier intérieur intègre tout les équipements requis pour le fonctionnement du CHM 15k. Les traversée de câbles pour la ligne de données, l'alimentation, la mise à la terre et le raccordement des ventilateurs externes sont réalisés à l'aide de presse-étoupe. Pour la compensation de pression, le boîtier intérieur est muni d'un élément de compensation de pression doté d'une membrane en GoreTex[®].

L'extrémité supérieure du boîtier intérieur forme une fenêtre de visualisation constituée de deux parties, en verre plat décoloré. Les fenêtres sont inclinées selon l'angle de Brewster. Cela permet de garantir une transmission de la lumière laser sans perte et un nettoyage automatique optimal des fenêtres. Les ventilateurs situés à l'arrière de l'appareil assurent le nettoyage des fenêtres : les ventilateurs sont mis en marche selon une périodicité horaire et en cas de pluie/neige. Les ventilateurs sont également utilisés pour éliminer la chaleur du boîtier intérieur. L'entretien des ventilateurs se fait via le panneau arrière amovible du CHM 15k. La porte extérieure permet d'accéder à l'intérieur du boîtier et aux fenêtres en verre, p. ex., pour le nettoyage. L'accès à l'intérieur du boîtier se fait par l'intermédiaire d'une porte intérieure. Les portes extérieure et intérieure sont sécurisées avec des mécanismes de verrouillage différents. La porte intérieure ne peut être ouverte que par le personnel de service de G. Lufft GmbH ou par le personnel habilité et formé du client.

4.2 Unités fonctionnelles du boîtier intérieur

Les unités fonctionnelles de l'appareil sont les suivantes :

- Unité de transmission et de réception (unité de mesure LOM)
- Carte de commande et composants associés
- Alimentation 12 15 VCC pour l'électronique
- Transformateur 48 VCC pour les ventilateurs
- Ventilateurs et capteurs de température
- Dispositif de protection contre la foudre et les surtensions pour le câble d'alimentation, LAN, RS485

Les unités fonctionnelles ont une conception modulaire, sont fixées séparément au boîtier intérieur, et peuvent être retirées et remplacées individuellement à des fins d'entretien.

4.2.1 Schéma fonctionnel

Figure 2 Schéma fonctionnel. Les nombres entre crochets correspondent à la numérotation dans la liste des pièces de rechange (fournie dans le manuel de maintenance).

La Figure 2 montre clairement que le contrôleur principal est l'unité centrale. Le contrôleur principal contrôle et surveille toutes les fonctions de l'appareil indiquées ici et fournit les valeurs d'état correspondantes.

4.2.2 Contrôle fonctionnel et état de l'appareil

Figure 3 Organigramme du cycle de mesure standard.

Le contrôle fonctionnel du CHM 15k (mesure et évaluation) est assuré par un FPGA et un processeur OMAP. L'intervalle d'enregistrement (non affiché ici) est constitué de plusieurs cycles de mesure calculés dans le processeur OMAP, tandis que les processus avec une résolution temporelle supérieure pouvant aller jusqu'à des intervalles d'1 seconde sont traités dans le FPGA.

La Figure 3 présente le cycle de mesure interne qui a lieu toutes les secondes. Les données de mesure et l'évaluation des paramètres d'état sont contrôlés après chaque cycle de mesure. Si les valeurs sont en dehors des plages de tolérance ou en cas de défaut matériel, le cycle de mesure par défaut est réinitialisé et un message d'erreur est généré et sorti.

Il existe cependant des éléments qui sont lus et contrôlés avec une résolution temporelle supérieure, comme la régulation de température, ou qui sont exécutés dans l'intervalle d'enregistrement, comme l'évaluation de l'encrassement de la fenêtre et la commande du ventilateur en cas de précipitations.

L'état du récepteur dépend des résultats de la surveillance du niveau de bruit, de la tension d'alimentation et du courant continu avec et sans impulsion de contrôle. En raison de sa structure interne, la source de lumière est principalement caractérisée par la fréquence de répétition des impulsions, qui peut diminuer avec le vieillissement de la source lumineuse. La fréquence des impulsions est surveillée. Pour les fréquences d'impulsions inférieures à 4,5 kHz, un message d'erreur est généré. La réflexion du rayonnement laser par la vitre de la fenêtre est également analysée afin de surveiller l'encrassement de la fenêtre. Toutes les valeurs obtenues sont sorties dans des télégrammes de données et font partie des fichiers NetCDF. Par ailleurs, les processus du firmware sont contrôlés par un chien de garde logiciel. Certaines valeurs et valeurs d'état sont sorties dans le télégramme de données étendu et dans les fichiers NetCDF. Le message par défaut contient des informations de base sur le code d'état (voir 8.5 Codes d'état).

5 Transport et étendue des fournitures

REMARQUE

L'appareil peut être endommagé en cas de manipulation inappropriée.

- ➡ Tout transport et déplacement du CHM 15k doit impérativement se faire au moyen d'un véhicule de transport et d'un dispositif de levage appropriés.
- Le CHM 15k doit être chargé et transporté emballé et dans la position de transport (voir Figure 5).
- Dans le véhicule, le CHM 15k doit être correctement protégé contre les glissades, les chocs, les coups, etc.

Étendue des fournitures :

- Célomètre CHM 15k
- Classeur avec documents
 - Gabarit de perçage
 - Instructions de montage mécanique
 - Instructions de montage électrique
 - Protocole d'essai
 - o Liste des numéros de série des composants intégrés
 - Manuel d'utilisation et clé USB avec logiciel de communication
- Éléments de fixation :
 - 4 chevilles S12 (Fischer Co.)
 - 4 boulons M10 x 140-ZN (DIN 571)
 - 4 rondelles ISO 7093-10.5-KST/PÁ
 - 4 rondelles ISO 7093-10.5-A2

À la demande du client :

- Le CHM 15k peut être fourni avec un cadre adaptateur qui permet de le fixer à l'aide de boulons de fixation.
- Un cadre adaptateur angulaire peut également être fourni, par exemple, pour incliner le célomètre de 15° afin de le protéger des rayons directs du soleil.

Informations sur les unités de mesure

Clé / clé anglaise pour 4x vis M10 : 18 mm ou 7/16 BSF ou 3/8 Worth. À la place de la vis M10, il est également possible d'utiliser une vis de 3/8 ou 25/64 po avec une cheville appropriée.

Pour des informations techniques supplémentaires, contactez G. Lufft GmbH.

État de fonctionnement du CHM 15k à la livraison

Mode de transfert	1, sortie automatique du télégramme de données standard		
Numéro d'appareil RS485	16		
Débit en bauds	9600		
Durée de mesure	15 secondes		

Pour des informations détaillées sur les états de fonctionnement, voir 8 Communication via RS485 et Ethernet.

6 Installation

REMARQUE

- La création et le dimensionnement du socle relèvent de la responsabilité de l'opérateur du CHM 15k. Le socle doit être dimensionné de manière à pouvoir résister à la tension permanente causée part le poids de l'appareil et les influences extérieures.
- Pour empêcher la poussière ou l'humidité de pénétrer dans l'appareil, ne pas ouvrir ce dernier pendant l'installation et la mise en service.

Le célomètre CHM 15k est installé sur un socle en béton adapté et fixé à ce dernier. Des vis de mise à niveau intégrées sur la face inférieure du pied permettent d'aligner verticalement l'appareil et, donc, l'unité de mesure.

Le CHM 15k doit être installé dans un espace extérieur protégé, à l'abri du rayonnement émis par des sources lumineuses puissantes. L'angle de rayonnement du soleil doit être ≥ 15° par rapport à la verticale. Veuillez demander un adaptateur d'angle adapté. L'appareil doit être installé à une distance suffisante des arbres et des arbustes de sorte que les feuilles et les aiguilles n'atteignent pas les ouvertures de sortie de lumière de l'appareil. Lors de l'installation du CHM 15k, les distance minimales suivantes doivent être respectées :

• par rapport aux appareils radio

2,5 m

10 m

- par rapport aux émetteurs fixes / stations de base (puissance de transmission ≥ 100 W) 25 m
- entre deux célomètres (interférence optique possible)

6.1 Installation du CHM 15k

6.1.1 Travail préparatoire

Le CHM 15k a besoin d'une surface d'appui de 50 x 50 cm. Il doit être stable, solidement installé et monté sur un socle en béton d'une taille appropriée. L'inclinaison de la surface d'appui ne doit pas dépasser 5 mm/m. Avant l'installation du CHM 15k, des trous doivent être percés et des chevilles insérées dans le socle en béton (Ø 12 mm, 4 chevilles sont livrées avec l'appareil), conformément au gabarit de perçage (voir Figure 4). Veiller à orienter correctement la porte extérieure pour le raccordement au boîtier de connexion de l'opérateur.

Figure 4 Gabarit de perçage.

- 1 Gabarit de perçage
- 2 Trous (ø 12 mm) pour la fixation
- 3 Possibilité de connexion électrique (boîtier de connexion)
- 4 Sens d'ouverture de la porte extérieure

6.1.2 Installation sur le socle

Le CHM 15k pèse 70 kg ; un équipement lourd peut provoquer des blessures graves.

Ne pas essayer de déplacer le CHM 15k sans une aide appropriée.
 L'installation du célomètre nécessite au moins deux personnes.

ATTENTION

Pour installer le célomètre CHM 15k, procéder comme suit :

Décharger le CHM 15k de l'équipement de transport et le rapprocher le plus possible du lieu d'installation.

Figure 5 CHM 15k emballé et en position de transport.

- ➡ Retirer l'emballage
- ➡ Dévisser les panneaux latéraux.
- Retirer les panneaux latéraux un par un

Figure 6 CHM 15k avec emballage en polystyrène ou carton alvéolaire.

- 1 Emballage en polystyrène
- 2 CHM 15k
- 3 Palette
- Soulever le CHM 15k manuellement pour le libérer des éléments en polystyrène, en veillant à respecter toutes les consignes de sécurité (positions de levage : Figure 7).

Figure 7 Positions de levage et protège-main (protection de la bordure).

Options pour un transport complémentaire :

- Pour porter l'équipement : passer les mains dans les ouvertures repérées par des flèches (Figure 7)
- Avec un diable : lorsque la distance par rapport au socle en béton est plus importante (Figure 8)

REMARQUE

- Lorsqu'un diable est utilisé, veiller à positionner le CHM 15k sur le diable la porte extérieure tournée vers le bas (voir Figure 8)
- Placer un coussin (p. ex., du papier bulle) entre le CHM et le diable

Figure 8 Transport avec un diable.

⇒ Disposer le CHM 15k sur le socle en béton en position de montage (vertical).

Lors de cette opération, faire attention à la position de la porte extérieure par rapport au boîtier de connexion électrique de l'opérateur (voir Figure 4).

Préassembler le CHM 15k sur le socle en béton à l'aide des rondelles et vis de fixation prévues, sans serrer ces dernières (voir Figure 9).

Figure 9 Éléments de fixation.

- 1 Cheville S12
- 2 Vis de réglage de niveau 5 mm (intégrées à la base de l'appareil)
- 3 Vis DIN 571-10 x 140-ZN
- 4 Rondelle ISO 7093-10.5-A2
- 5 Rondelle ISO 7093-10.5-KST/PA
- 6 Socle en béton
- Aligner verticalement le CHM 15k avec les vis de réglage de niveau intégrées à la base de l'appareil (à l'aide d'un niveau à bulle positionné sur un panneau latéral et sur l'avant)
- Serrer les vis de fixation (écrous)
- Retirer le protège-main (protection de la bordure) du bord supérieur et le fixer sur la base en vue du prochain déplacement

6.2 Installation électrique

REMARQUE

En cas d'installation incorrecte, l'appareil peut être endommagé.

- La connexion électrique du CHM 15k doit être effectuée par un électricien qualifié de G. Lufft GmbH ou d'une autre société.
 Le non-respect de cette instruction entraînera l'annulation de la garantie et des droits de recours au titre de la garantie.
- L'opérateur doit satisfaire à toutes les exigences pour assurer la connexion du célomètre CHM 15k conformément à EN 61010-1, p. ex., l'installation d'un boîtier de connexion.

La Figure 10 présente un schéma de l'installation électrique du CHM 15k. L'alimentation électrique (1) de l'appareil doit être raccordée à un dispositif de séparation externe. Ce dernier doit être facilement accessible pour permettre de déconnecter l'appareil du secteur si besoin est. Il doit être marqué comme associé au CHM 15k et muni d'un fusible amont adapté à une section de câble \geq 6 A, B ou C. Un boîtier de connexion doit être installé à une distance < 3 m. La longueur du câble de mise à la terre doit être la plus courte possible. Les connexions doivent satisfaire aux réglementations en vigueur dans le pays.

Figure 10 Schéma de l'installation électrique.

- 1 Alimentation électrique
- 2 Disjoncteur
- 3 Données
- 4 PC pour accès à distance (avec LAN/DSL ; le PC ne doit pas être local)
- 5 Protection contre la foudre

AVERTISSEMENT

Tout contact avec les pièces sous tension peut provoquer un choc électrique et entraîner des blessures graves, voire mortelles.

Avant de commencer l'installation, actionner le disjoncteur externe et prendre des précautions pour éviter toute remise sous tension.

Les connexions électriques du CHM15k sont décrites plus en détail dans la Figure 11. Raccorder les câbles secteur et données comme illustré dans cette figure. Il est recommandé d'intégrer à toutes les connexions une protection externe contre les surtensions afin d'éviter tout dommage sur le boîtier de connexion. Une protection interne contre la foudre est prévue à l'intérieur de l'appareil. Le CHM 15k est connecté par l'intermédiaire des câbles suivants, livrés avec l'appareil :

1. Câble d'alimentation 230 VCC (câble secteur) : code couleur : conducteur neutre : bleu, conducteur : marron, conducteur de protection : vert-jaune ; longueur standard 10 m. **OU**

Câble d'alimentation 115 VCA (câble secteur) : code couleur : conducteur noir, conducteur neutre : blanc, conducteur de protection : vert/vert-jaune.

Figure 11 Installation électrique du CHM 15k.

 Câble de mise à la terre 10 mm² (1 pôle, vert-jaune), longueur standard 2,6 m, pour le raccordement à la terre (voir Figure 12). La longueur du câble de mise à la terre doit être la plus courte possible.

Figure 12 Raccordement à la terre sur le socle de l'appareil.

3. Câble de données (RS 485) : conducteur A (-) : jaune ; conducteur B (+) : vert ; RS485 - GND : blanc et marron ; blindage si nécessaire : (voir Figure 13) ; longueur standard 10 m.

Figure 13 Connexion RS485 à un convertisseur de signaux.

- 4. Câble de données (LAN) : équipé d'une fiche RJ45 standard, pour la connexion à un ordinateur, concentrateur ou commutateur distant, longueurs standards 5 ou 10 m.
- 5. *En option au lieu de l'élément 4 :* ligne de données (DSL) : munie d'un câble à 2 pôles pour la connexion d'un modem DSL Figure 14).

La désignation RDA (-), RDB (+) est définie différemment par les fabricants. Lufft utilise la notation de B&B Electronics.

Figure 14 Connexion DSL.

7 Mise en service et retrait du service

7.1 Mise en service avec la connexion RS485

Conditions préalables :

- Le célomètre CHM 15k est installé correctement
- Le câble de commande (RS485), le câble de mise à la terre et le câble secteur (230 VCA) sont raccordés
- Un programme de terminal, p. ex., HyperTerminal sous Windows, est disponible pour surveiller la communication. Ce programme est configuré pour la communication comme suit :
 - Débit en bauds : 9 600
 - Bits de données : 8
 - Parité : sans
 - Bits d'arrêt : 1
 - Contrôle de flux : sans

Après la mise sous tension de l'alimentation, le CHM 15k émet un rayonnement laser invisible de la classe 1M à travers l'ouverture sur le dessus de l'appareil. Observé à travers des instruments optiques, un rayonnement de la classe 1M peut provoquer des blessures graves aux yeux.

- ➡ Ne jamais observer le faisceau laser à travers des instruments optiques, notamment des jumelles.
- Éviter de regarder directement dans le faisceau laser

Une fois l'alimentation connectée, le CHM 15k démarre automatiquement. Pendant le processus de démarrage un auto-test interne est effectué ; par exemple, les ventilateurs démarrent pendant quelques secondes. La communication avec l'instrument peut se faire en moins d'une minute. Le CHM 15k est opérationnel après une phase de mise en température dont la durée varie en fonction de la température extérieure. Le délai avant que les données de mesures ne soient disponibles en haute qualité peut être compris entre 2 minutes (démarrage à chaud) et une heure (démarrage à froid à -40 °C).

Le CHM 15k envoie automatiquement les télégrammes de données standards lorsque la procédure de démarrage est terminée. Cela fait partie de la configuration par défaut et peut différer pour des paramètres de démarrage de CHM 15k spécifiques à l'utilisateur. La sortie automatique toutes les 15 s est utile pour contrôler le bon fonctionnement de la communication sans avoir à entrer une commande.

Pour changer le comportement au démarrage, p. ex., mode interrogation ou automatique, ou le télégramme à utiliser au démarrage, voir le chapitre 8 Communication via RS485 et Ethernet.

Commandes de test pour la communication RS485

La communication peut être testée avec la commande suivante (RS485Number = 16 (valeur par défaut) :

set<SPACE><RS485Number>:Transfermode=0<CR><LF>

Cette commande provoque le passage du mode automatique au mode interrogation. Tester en mode interrogation permet d'éviter les interruptions provoquées par les télégrammes envoyés automatiquement pendant la saisie. 9 types de télégrammes sont disponibles :

- Télégramme de données standard (nom abrégé : 1 ou s)
- Télégramme de données étendu (nom abrégé : 2 ou l)
- Télégramme de données brutes (nom abrégé : 3 or a)
- Télégrammes définis par l'utilisateur (nom abrégé : 4, 5, ..., 9)

Le chapitre 8 décrit en détail les commandes RS485 possibles et leurs effets. Certaines commandes pour le test de fonctionnement et le réglage initial de l'appareil sont décrites dans le Tableau 3.

Commande	Description	Réponse (abrégée)
get <space>16:L<cr><lf></lf></cr></space>	Sortie du télégramme de données étendu	voir 8.3.4
set <space>16:RNO=14<cr><lf></lf></cr></space>	Remplace l'adresse RS485 16 par 14	set 16:RNO=14
set <space>16:Baud=4<cr><lf></lf></cr></space>	Définit le débit en bauds sur 19 200	set 16:Baud=4
set <space>16:dt(s)=15<cr><lf></lf></cr></space>	Définit l'intervalle d'enregistrement sur 15 s	set 16:dt(s)=15
get <space>16:Lifetime(h)<cr><lf></lf></cr></space>	Lecture du compteur des heures de fonctionnement du laser	get 16:Lifetime(h)

Tableau 3 Commandes pour un test de fonctionnement.

Après avoir réalisé le test de fonctionnement simple sur le CHM 15k :

- continuer à fonctionner en mode interrogation, ou
- rétablir le mode de transmission automatique

set<SPACE><RS485Number>:Transfermode=1<CR><LF>

Remarque : cette commande replace l'appareil dans le mode de transmission automatique avec le télégramme standard 1.

Débit en bauds avec la transmission de données brutes

Les réglages du débit en bauds doivent être pris en considération, notamment en mode bus RS485. Si une transmission de données brutes est requise, chaque télégramme peut avoir une taille de 12 ko. Pour réduire la durée de transmission entre deux télégrammes de 15 s, le débit en bauds devra être réglé sur une vitesse d'au moins 19 200 bauds.

7.2 Mise en service avec la connexion LAN

Par ailleurs, ou comme alternative à la connexion RS485, une connexion LAN (Ethernet) peut également être utilisée.

Condition préalable : un câble LAN connecté (voir 6.2 Installation électrique) ou une connexion LAN sur DSL avec, au milieu, un modem émetteur/récepteur DSL.

Configuration : 3 adresses IP distinctes sont disponibles simultanément pour la communication :

- 1. Une adresse fixe préconfigurée pour l'appareil → 192.168.100.101, subnet 255.255.255.0
- 2. Attribution par le serveur DHCP (nécessite un serveur DHCP)
- Adresse utilisateur + sous-réseau + passerelle, voir section 8.7 Communication via l'interface Web Ethernet concernant la configuration avec une connexion LAN/WAN à l'appareil, et 8.2 lorsque ces valeurs sont configurées via l'interface RS485.

L'adresse de service (1) ne peut pas être modifiée par l'utilisateur. Elle est toujours disponible et peut être utilisée en tant que liaison directe entre un ordinateur portable et le CHM 15k.

L'une des 3 adresses IP peut être entrée dans un navigateur Web (voir Figure 15) pour la communication avec l'appareil. La Figure 20 présente l'onglet « Config Network » (Configuration du réseau) dans le navigateur Internet Firefox. La modification de l'adresse IP utilisateur (3) exige des droits de Superuser sous l'onglet « Device » (Appareil).

Le mot de passe de Superuser est : 15k-Nimbus

Le mot de passe de Superuser peut être modifié, voir Figure 22.

L'interface Web a été testée avec les navigateurs Web suivants :

- Internet Explorer 8 ou version plus récente
- Firefox 3.6 ou version plus récente
- Google Chrome
- Apple Safari

Dans l'environnement de réseau DHCP (2), le CHM 15k est configuré automatiquement. Le mode DHCP peut être désactivé.

CHM - Cloud Hei	ight Meter	+	
٠	[] 10.64.102	.36	
Device	Viewer	NetCDF Files	Config Sy

Figure 15 Vue du navigateur Firefox pour une connexion avec le CHM 15k (ici : adresse IP fixe).

Cette commande permet d'interroger une adresse DHCP via une connexion RS485 :

get<SPACE><RS485Number>:IPD<CR><LF>.

Si elle est disponible, l'appareil transmet l'adresse DHCP, qui peut être utilisée dans une seconde étape dans un navigateur Web pour établir une connexion au système via une connexion LAN. L'adresse IP de l'utilisateur peut être définie ou interrogée par l'utilisateur via RS485 avec le paramètre IPS au lieu de IPD, p. ex. :

get<SPACE><RS485Number>:IPS<CR><LF>

set<SPACE><RS485Number>:IPS=xxx.xxx.xxx.xxx<CR><LF>

Pour une prise en charge plus étendue concernant la communication, contactez G. Lufft GmbH.

7.3 Retrait du service

Les utilisateurs avancés doivent débrancher avec précaution l'appareil de l'alimentation :

- Les utilisateurs avec une autorisation de superviseur doivent utiliser l'interface Web : connectezvous en tant que Superuser et appuyez sur « SHUTDOWN SYSTEM » sous l'onglet « Device » (Appareil).
- Les utilisateurs de RS485 peuvent entrer la commande suivante :

set<SPACE><RS485Number>:SHT<CR><LF>

Dans les deux cas, le système basé sur Linux est arrêté et les données de mesure sont enregistrées sur la carte SD locale.

Après l'arrêt logiciel, vous pouvez débrancher l'alimentation principale sans risque de perdre des données.

Pour désinstaller le CHM 15k et le réinstaller à un autre emplacement, procédez comme décrit dans les sections 6.1.2 Installation sur le socle et 6.2 Installation électrique, dans l'ordre inverse.

7.4 Mise au rebut

Instructions pour la mise au rebut

La mise au rebut du célomètre CHM 15k doit se faire en accord avec les réglementations nationales. Les équipements électriques portant ce symbole ne doivent pas être mis au rebut dans les systèmes d'élimination des déchets domestiques ou publics européens. Renvoyez les appareils vieux ou usagés au fabricant qui se chargera de les mettre au rebut sans frais.

8 Communication via RS485 et Ethernet

Le CHM 15k prend en charge les interfaces RS485 (section 8.2) et Ethernet (section 8.7) pour la communication avec l'appareil. Toutes deux permettent de transférer les données des valeurs mesurées et la configuration de l'appareil, et elles peuvent être utilisées simultanément.

Une interface Web est disponible pour la communication via l'interface Ethernet. Quel que soit le système d'exploitation, le célomètre est accessible à partir de différents navigateurs Web.

L'interface Web peut également être utilisée pour télécharger manuellement les données mesurées enregistrées dans des fichiers NetCDF journaliers sur une carte SD intégrée (section 8.4). Un service AFD (ftp) est également mis en œuvre sur le système (section 8.8). Il permet, par exemple, de transférer des données sous forme de blocs de fichiers NetCDF de 5 minutes vers un serveur FTP extérieur. La communication RS485 nécessite un programme terminal.

Envoi et réception avec RS485

L'interface RS485 n'autorise pas des opérations d'envoi et de réception simultanées (mode semi-duplex). En conséquence, l'interface est automatiquement commutée en interne. Pendant la réception d'un télégramme de données envoyé automatiquement (voir les sections 8.3.3 Télégramme de données standard à 8.3.5 Télégramme de données brutes), il n'est donc pas possible d'envoyer d'autres commandes (comme décrit en 8.1).

Les indicateurs de début et de fin entrants <STX> et <EOT> indiquent une transmission en réception en cours.

8.1 Liste des paramètres pouvant être définis

Le Tableau 4 dresse la liste des principaux paramètres. Ces derniers sont décrits dans les sections qui suivent. Afin d'éviter les effets indésirables sur le fonctionnement de l'appareil, certaines options ne peuvent être définies qu'en mode Service (RS485) ou en mode Superuser ou Utilisateur du service (Ethernet), comme, par exemple, le nom de l'appareil.

Le Tableau 5 affiche une liste de paramètres avec des propriétés en lecture seule. Ces paramètres sont stockés en partie dans l'EEPROM de l'unité de mesure et influent sur l'évaluation des données et les réglages de base du système.

Les tableaux indiquent la plage de valeurs admissible pour chaque paramètre et la valeur par défaut à la livraison de l'appareil. Ils indiquent également quand le mode Service est requis.

Paramètre	Commande abréqée ^{RS485}	Valeur par défaut	Intervalle/brève description
AfdMode*	AFD	0	0 ; 1, activer le transfert de données ftp
Altitude(m)	ALT	0	0 – 9999, l'unité est toujours le mètre !
ApdControlMode*	ACM	3	0, 1, mode APD, ne changer que si le mode opératoire est connu
Azimuth	AZT	0	0-360 degrés x 100 ^{Web} (p. ex., 12.25 ^{RS485} 1225 ^{Web})
Baud	BAU	3	2 – 7 (4 800 – 115 200 baud)
BaudAfterError*	BAE	3	2 – 7 (4 800 – 115 200 baud)
BlowerMode	BLM	0	0-4
ChmTest*	СНТ	0	0;1
CloudDetectionMode	CDM	0	0;1

Paramètre	Commande abréqée ^{RS485}	Valeur par défaut	Intervalle/brève description
Comment	СОМ		Commentaire ; également stocké dans le fichier NetCDF
Comment 1 ^{RS485}	CM1		Champ de commentaire supplémentaire (31 caractères)
Comment 2 RS485	CM2		Champ de commentaire supplémentaire (31 caractères)
Comment 3 RS485	СМЗ		Champ de commentaire supplémentaire (31 caractères)
Comment 4 RS485	CM4		Champ de commentaire supplémentaire (31 caractères)
Comment 5 RS485	CM5		Champ de commentaire supplémentaire (31 caractères)
Comment 6 RS485	CM6		Champ de commentaire supplémentaire (31 caractères)
Comment 7 RS485	CM7		Champ de commentaire supplémentaire (31 caractères)
DateTime			Heure UTC dans le format JJ.mm.AAAA;HH:MM:SS ^{RS485} et MMJJHHmmAAAA ^{Web} (voir Figure 22)
DeviceName*	DVN	CHMyyxxxx	CHM + numéro de série de l'appareil
DeviceType*	DVT	0	Basculement du format NetCDF (firmware <1 000 : valeur par défaut CHM15k)
DHCPMode	DHM	1	0 ; 1 activer/désactiver le mode DHCP
DNSServer	DNS		Définition/interrogation de l'adresse IP du serveur DNS
dt(s) ^{<i>RS485</i> LoggingTime^{Web}}	DTS	15	Intervalle d'enregistrement et de reporting : 5 – 600 s
Gateway	GAT	0.0.0.0	Définition/interrogation de l'adresse statique de la passerelle
HardwareVersion*	HW∨		Dépendant de l'appareil, voir Tableau 23
HttpPort	HPT	80	Spécifie le port http pour la connexion à l'interface Web de l'appareil
IgnoreCHars*	ICH	06	Codes ASCII 8 bits
Institution	INS	NN	Institution (texte)
IPAddress	IPS	0.0.0.0	Définition/interrogation de l'adresse statique
LanPort	LPT	11000	Port pour la transmission de télégramme via Ethernet

п

Paramètre	Commande abrégée ^{RS485}	Valeur par défaut	Intervalle/brève description
LanTelegramNumber	LTN	2	Format de télégramme pour la transmission Ethernet [1, 9], voir section 8.3
LanTransferMode	LTM	1	Mode de communication pour la transmission de télégramme via Ethernet (0 = interrogation ; 1 = envoi automatique)
LaserMode*	LSM	1	Activation/désactivation du laser
Latitude	LAT	0	-90 à +90 degrés (x 10 ⁶) ^{Web} (p. ex, 52.430210 ^{RS485} et 52430210 ^{Web}) + pour des degrés Nord
Layer	NOL	3	1 – 9, nombre de couches de nuages
Location	LOC	NN	Chaîne alphanumérique (31 caractères max., \/:*?"<> _#% non admis)
Longitude	LON	0	-180 à +180 degrés (x 10 ⁶)Web (p. ex, 13.524735 ^{RS485} et 13524735 ^{Web}) + pour des degrés Est
MaxCrosstalkChars*	MCC	5	0 – 1024
NetMask	NMA	0.0.0.0	Définition/interrogation de l'adresse statique du masque réseau
NtpMode	NTM	1	0; 1 Activation/désactivation de ntpd
NtpServer	NTS	0.0.0.0	Définition/interrogation de l'adresse du serveur de temps NTP
PeltierMode*	PTM	1	0;1
RangeEnd	RAE	15345	Dernière valeur de distance dans un fichier NetCDF
RangeHRDim	RHD	32	Nombre de points de données dans le vecteur de données haute résolution
RangeResolution	RAR	3	Nombre d'intervalles de 5 m pour le vecteur de données NetCDF moyenné
RangeStart	RAS	15	Première valeur de distance dans le fichier NetCDF
Reset	RST	0	0 ; 1 redémarrage du CHM (voir 8.2.4)
ResetPassword*	RSP	0	0 ; 1 ; réinitialiser le mot de passe de Superuser par défaut

Paramètre	Commande abréqée ^{RS485}	Valeur par défaut	Intervalle/brève description
ResetSettings	RSG	0	0 ; 1 réinitialiser les réglages par défaut, (voir 8.2.4) ; interface Web : « set to factory setting »
RestartNetwork	RSN	0	0 ; 1 écrit les nouveaux paramètres dans le fichier de configuration et redémarre le réseau
RS485Number	RNO	16	0 – 99 (utilisé avec RS485)
ServiceModeRS485	SMO	0	0 ; 1 bascule en mode Service pour changer les valeurs « critiques »
ShutDown	SHT		0 ; 1 arrêt du système CHM
StandBy	STB	0	0 ; 1 ; mode veille avec télégramme de veille pour réduire la consommation électrique
SystemStatusMode	SSM	0	0 ; 1 ; le code d'état croissant est utilisé dans le télégramme lorsque ce paramètre est réglé sur 1
TimeOutRs485(s)*	TOR	30	5 – 3600
TimeZoneoffsetHours	ТΖН	0	-12 12 heures, p. ex., +1 heure pour l'heure normale d'Europe centrale (CET), utilisé pour contrôler la ventilation de la fenêtre
TransferMode	ТМО	0	0 – 9, voir la section 8.3
TransferModeAfterError*	ТМЕ	0	0 – 9
UAPD*			Dépendant de l'appareil en mV (p. ex., 172000)
Unit(m/ft)	UNT	m	m, ft
UseAltitude	UAL	0	0;1
WMOStationCode	WSC		Définition/interrogation du code de station WMO
Zenith	ZET	0	0 - 90 degrés (x 100) ^{<i>Web</i>} (p. ex., 10.25 ^{<i>R</i>S485} et 1025 ^{<i>Web</i>}) 0° est vertical

Tableau 4 Liste des paramètres de l'appareil pouvant être configurés ;

peut être défini en mode Service

Web Format pour l'interface Web ou disponible uniquement dans l'interface Web.

RS485 Format pour RS485 ou disponible uniquement pour RS485.

Paramètre	Commande abrégée ^{RS485}	Valeur par défaut	Description
APDBreakdown	UBR		Dépendant de l'appareil (p. ex., 400000 mV)
ApdTempGradient	тсо	2400	Valeur pour comparaison [mV/K]

IPDhcp	IPD		Adresse IP DHCP
LaserPower	LAP		Dépendant de l'appareil (p. ex., 50 mW)
LifeTime(h)	LIT		Nombre d'heures de fonctionnement du laser
Parameters ^{RS485}			Donne la liste de tous les paramètres disponibles en mode RS485
SerLOM	LOM	TUByyxxxx	Numéro de série de l'unité de mesure (LOM, module optique laser)
SystemLifeTime(h)	SLT		Nombre total de toutes les heures de fonctionnement du système CHM
TBCalibration	ТВС		Facteur d'échelle par rapport à la référence
VersionFirmware	VFI		Version du firmware (traitement et manipulation des données)
VersionFPGA	VFP		Firmware FPGA
VersionLinux	VLI		Version du système d'exploitation

Tableau 5 Liste des paramètres en lecture seule, accessibles via l'interface RS485 ;

RS485 disponible uniquement pour RS485.

Notes explicatives pour le Tableau 4

AFDMode : activation/désactivation du système de distribution de fichiers étendu via LAN / WAN / DSL, voir http://www.dwd.de/AFD/ pour plus d'informations ou la section *8.8*.

Altitude(m) : spécification de la hauteur du lieu au-dessus du niveau de la mer, en mètres. Dans les fichiers NetCDF, le paramètre CHO (Cloud Base Offset, décalage de la base du plafond nuageux) est utilisé. Il combine logiquement les variables Altitude et UseAltitude.

Azimuth : spécification de l'angle horizontal en degrés.

Baud : modification du débit en bauds (voir 8.2.3 Modification du débit en bauds).

BaudAfterError : débit en bauds par défaut après une erreur de communication (voir 8.2.3 Modification du débit en bauds).

BlowerMode : utilisé pour tester les ventilateurs pour fenêtres et basculer entre les différents modes de fonctionnement. Mode 2 : « rest at night » (repos pendant la nuit) ne fonctionne correctement que si le paramètre TimeZoneOffsetHours est lui aussi défini correctement. 0 = contrôle toutes les heures et dépendant des conditions météorologiques, 1 = pas de contrôle horaire entre 22:00 et 06:00, 2 = éteint de 22:00 à 06:00, 3 = toujours activé, 4 = toujours désactivé.

DataTime : réglage de la date et de l'heure (voir 8.2.5 Modification des paramètres de temps).

dt(s) : intervalle d'enregistrement (en mode automatique identique à l'intervalle de reporting). Un intervalle plus long conduit à une moyenne temporelle établie sur davantage d'impulsions (tirs) de photons et, donc, à un meilleur rapport signal/bruit. Une augmentation d'un facteur n aboutit à une amélioration d'un facteur racine carrée de n. Toutes les données brutes dans l'intervalle de temps dt(s) sont incluses dans l'évaluation. Aucune sélection individuelle des données n'a lieu.

DeviceName (anciennement FabName) : acronyme de l'appareil (CHM) combiné à son numéro de série, p. ex., CHM060001.

IgnoreChars : codes HEX spécifiques de 2 caractères, p. ex., « 06 » correspond à <ack> ; peuvent être ajoutés à une liste de caractères qui ne doivent pas être évalués par l'appareil CHM 15k.

Institution : institution ou société.

Lasermode : active/désactive le laser, option utile pour les tests.

LaserPower : puissance du laser en mW.

Latitude : latitude du lieu, décimal, exemple Berlin : 52,51833 (correspond à 52° 31' 6" N).

Layer (Number of Layers) : nombre de couches de nuages affichées dans le télégramme étendu et le fichier NetCDF.

Lifetime(h) : demande le nombre d'heures de fonctionnement du laser (durée de vie du laser).

Location : définit/demande l'emplacement de l'appareil. Le nom de l'appareil est limité à 31 caractères maximum, \/:*?" <> |_# % ne sont pas admis.

Longitude : longitude du lieu, décimal, orientation vers l'Est nombre positif, p. ex. Berlin : 13,40833 (correspond à 13° 24' 30" E).

MaxCrossTalkChars : nombre de caractères que le CHM 15k ignore dans l'intervalle de temps « TimeOutRS485(s) » s'il ne se termine pas par <EOT> (04 HEX), <CR> (0D HEX), <LF> (0A HEX). Le paramètre est mis en œuvre pour empêcher le célomètre de revenir au débit en bauds par défaut à cause du bruit sur des lignes de communication instables.

Parameters : demande la liste complète des paramètres pour RS485.

RS485Number : désigne le numéro d'identification dans un système de bus qui est requis pour sélectionner un instrument précis via une interface de données. Chaque instrument répond non seulement à l'adresse spécifique, mais également au numéro d'identification universel 99.

Standby : met hors tension le laser, le chauffage et le ventilateur.

SystemStatusMode : définit la variante du code d'état à utiliser dans les télégrammes de données. 0 = anciens codes d'état utilisés par CHM 15k avant le firmware 1.x, 1 = codes d'état croissants, voir section 8.5 Codes d'état.

TimeOutRS485(s): définit un intervalle temporel pour MaxCrossTalkChars et BaudAfterError (par défaut 30 s).

Time Zone offset hours : doit être défini pour corriger la période nocturne locale, p. ex., pour arrêter les ventilateurs pendant la nuit. Le système lui-même fonctionne en temps universel coordonné (UTC).

TransferMode : voir 8.3.1 Modeinterrogation à 8.3.5 Télégramme de données brutes.

Unit(m/ft) : saisie des valeurs cibles en mètres (m) ou en pieds (ft).

UseAltitude : inclusion de l'altitude(m) dans la sortie de données. Par exemple, l'entrée d'une valeur de 60 m pour l'altitude augmente la hauteur de la base du plafond nuageux transmise de 60 m si UseAltitude est défini sur 1 (true).

Zenith : spécification de l'angle vertical en degrés ; l'algorithme SCA (Sky Condition Algorithm, algorithme d'état du ciel) utilise cet angle pour calculer la hauteur réelle de la base du plafond nuageux.

8.2 Configuration de l'appareil avec RS485

L'utilisateur peut changer les paramètres via l'interface RS485 :

- pour contrôler les processus de mesure ;
- pour configurer les interfaces de communication.

8.2.1 Lecture d'un paramètre

La lecture d'un paramètre s'effectue avec la commande :

get<SPACE><RS485Number>:<ParameterName><CR><LF>

Si <ParameterName> contient un nom correct selon le Tableau 4 ou le Tableau 5 , la valeur est délivrée via la commande

<STX>get<SPACE><Device>:<ParameterName>=<Value>;<ASCIITwo'sComplement><CR><LF><E OT>

.

Exemple avec le numéro RS485 par défaut, 16, et le nom d'appareil CHM060003 La commande abrégée

get 16: DVN<CR><LF>

peut être utilisée pour demander la désignation de l'appareil ; la réponse obtenue est, par exemple, la suivante :

<STX>get 16:DeviceName=CHM060003;3F<CR><LF><EOT>.

Chacun des caractères non imprimables <STX>, <CR>, <LF> et <EOT> correspond à un octet avec les codes hexadécimaux 02, 0D, 0A et 04. Les caractères 3F correspondent au total de contrôle du complément à deux, formé sur toute la ligne de réponse, à l'exclusion de ces deux caractères (3F), conformément aux formats de réponse du protocole (voir 8.3.3 Télégramme de données standard à 8.3.5 Télégramme de données brutes).

8.2.2 Définition d'un paramètre

Un paramètre de configuration est modifié via la commande :

set<SPACE><RS485Number>:<ParameterName>=<Value><CR><LF>

Une modification réussie est confirmée avec :

<STX>set<SPACE><RS485Number>:<ParameterName>=<Value*>;<ASCIITwo'sComplement><CR ><LF><EOT>

Si <value> dans l'instruction d'interrogation est comprise dans les limites de la plage de valeurs autorisée, la nouvelle valeur définie <value*> correspond également à ce paramètre. Si les valeurs sont trop petites (trop grandes), la valeur minimale (maximale) de la plage autorisée est utilisée. Pour les valeurs alphanumériques comme <value>, la valeur par défaut est utilisée.

Exemple avec RS485Number = 16 : avec la commande

set 16:Unit(m/ft)=ft<CR><LF>

ou dans le format abrégé

set 16:UNT=ft<CR><LF>

l'unité de mesure de toutes les cotes altimétriques dans les réponses du protocole est convertie de l'unité par défaut (m) en pieds (ft). Dans la mesure où Unit(m/ft) fait partie des paramètres modifiables, une confirmation doit être faite avec

<STX>set 16:Unit(m/ft)=ft;2A<CR><LF><EOT>

. La valeur 2A est la somme de contrôle de la ligne de réponse.

8.2.3 Modification du débit en bauds

La modification du débit en bauds est une caractéristique particulière. La modification suit la procédure décrite en 8.2.2 Définition d'un paramètre. Ainsi, la commande

set<SPACE><RNO>:Baud=4<CR><LF>

définit la vitesse de transmission n° 4 correspondant à 19200 bits/s.

La corrélation entre le numéro de la vitesse de transmission et le débit en bauds est indiqué dans le Tableau 6.

N° de la vitesse de transmission	Débit en bauds [bits/s]
(0)	(1200)
(1)	(2400)
2	4800
3	9600
4	19200
5	38400
6	57600
7	115200

Tableau 6 Corrélation entre le numéro de la vitesse de transmission et le débit en bauds.

Les vitesses de transmission 0 et 1 ne sont pas spécifiées dans la limite de temps. Après l'envoi d'une commande set, l'interface est immédiatement réglée sur le nouveau débit en bauds. Une vitesse de transmission définie de manière incorrecte aboutira ensuite à des erreurs de transmission et rendra une réinitialisation normale impossible à cause de l'absence de possibilité de communication. Après expiration de l'intervalle de temps spécifié dans **TimeOutRS485** (valeur par défaut : 30 s), le débit en bauds incorrect est réinitialisé à la valeur définie dans le paramètre **BaudAfterError**. Cela garantit que l'utilisateur peut reprendre le contrôle de l'appareil après ce temps d'attente. La valeur par défaut de **BaudAfterError** est 3, ce qui correspond à 9600 bits/seconde. La valeur par défaut doit également être modifiée par l'utilisateur si, par exemple, un débit en bauds de 19200 est toujours utilisé.

8.2.4 Redémarrage du système Linux embarqué/réglages usine

La commande

set<SPACE><RS485Number>:Reset=1<CR><LF>

ordonne au processeur interne d'effectuer un redémarrage immédiat. Ce redémarrage dure moins d'une minute. La communication avec le CHM 15k n'est pas possible pendant ce temps ; toute sortie automatique de télégramme en cours est également interrompue.

La commande

set<SPACE><RS485Number>:ResetSettings=1<CR><LF>

réinitialise tous les paramètres à leur réglage d'usine.

La commande RSN redémarre le réseau. Un redémarrage est toujours nécessaire si les paramètres réseau, p. ex., l'adresse IP, le mode DHCP, etc., ont été modifiés. Les nouveaux paramètres réseau ne sont utilisés qu'après l'entrée des commandes RSN ou RST.

set<SPACE><RS485Number>:RSN=1<CR><LF>

8.2.5 Modification des paramètres de temps

set<SPACE><RS485Number>:dts=30<CR><LF>

Le temps d'enregistrement et de reporting est réglé sur 30 secondes. Le temps de mesure interne est toujours réglé sur une seconde. Le temps d'enregistrement et de reporting doit être un multiple d'une seconde.

La commande

set<SPACE><RS485Number>:DateTime=DD.MM.YYYY;hh:mm:ss<CR><LF>

est utilisée pour changer la date et l'heure du PC interne. Où DD = jour, MM = mois et YYYY = année, hh = heure, mm = minute et ss = seconde selon le fuseau horaire GMT (Greenwich Mean Time).

Exemple avec RS485Number = 16 :

set 16:DateTime=13.04.2006;17:22:46<CR><LF>

règle la date sur 13.04.2006 et l'heure sur 17:22:46 GMT.

8.3 Interrogation de données RS485

Pendant le fonctionnement, le CHM 15k se trouve à chaque moment dans l'un des modes de transfert indiqués dans le Tableau 7.

Mode de transfert	Signification
0	Les télégrammes de données ne sont sortis qu'en cas de demande spécifique.
1	Sortie automatique du télégramme de données standard
2	Sortie automatique du télégramme de données étendu
3	Sortie automatique du télégramme de données brutes
4 à 9	Sortie automatique d'autres télégrammes de données brutes

Tableau 7 Vue d'ensemble des modes de transfert.

Le mode de transfert peut être modifié avec la commande Set

set <RS485Number>:TMO=x

comme décrit dans la section 8.2.2 Définition d'un paramètre ou via une entrée directe dans l'interface Web.

Ainsi, la commande

set<SPACE>16:TransferMode=1<CR><LF>

active le réglage par défaut valide au moment de la livraison pour l'appareil avec le numéro RS485 16 (sortie automatique du télégramme de données standard).

8.3.1 Modeinterrogation

La commande

set<SPACE><RS485Number>:TransferMode=0<CR><LF>

active le mode interrogation ; toute sortie de télégramme automatique qui était préalablement en cours d'exécution est alors délivrée. Les trois commandes suivantes :

get<SPACE><RS485Number>:S<CR><LF>

get<SPACE><RS485Number>:L<CR><LF>

get<SPACE><RS485Number>:A<CR><LF>

permettent d'appeler une fois le télégramme de données standard (S), le télégramme de données étendu (L) ou le télégramme de données brutes (A). Pour le format de chaque télégramme de données, voir les sections 8.3.3 Télégramme de données standard à 8.3.5 (Tableau 8, Tableau 9, Tableau 12).

Télégrammes supplémentaires

La plateforme matérielle Nimbus du CHM 15k (depuis 2011) prend en charge d'autres télégrammes utilisateur.

Les caractères {S, L, A} ainsi que les chiffres sont pris en charge. Avec S = 1, L = 2, A = 3, les trois premiers chiffres sont prédéfinis.

8.3.2 Mode de sortie automatique

La commande

set<SPACE><RS485Number>:TransferMode=1<CR><LF>

Le mode automatique est défini avec une sortie de télégramme standard. Son taux de répétition dépend de la variable dt(s) qui est définie par défaut sur 15 secondes. Le Tableau 8 contient le format du télégramme de données standard.

Le télégramme de données étendu est sorti avec la commande

set<SPACE><RS485Number>:TransferMode=2<CR><LF>

Le Tableau 9 contient le format du télégramme de données étendu.

Le télégramme de données brutes est sorti via la commande suivante :

set<SPACE><RS485Number>:TransferMode=3<CR><LF>

Le Tableau 12 contient le format du télégramme de données brutes.

Modes de transfert 4 à 9 Les modes de transfert 4 à 9 sont des télégrammes de données prédéfinis supplémentaires.

8.3.3 Télégramme de données standard

Le télégramme de données standard comporte 96 octets. Les données sont séparées par des espaces (20 HEX). Le Tableau 8 affiche la structure exacte de la chaîne de caractères pour le format des messages.

Octet	Valeur ¹	Description				
0	<stx></stx>	20 HEX				
1	Х					
2	1					
3, 4	ТА					
5	<space></space>	20 HEX				
6	8					
7	<space></space>	20 HEX				
8-10	***	Intervalle de sortie [s]				
11	<space></space>	20 HEX				
12-19	** ** **	Date (jj.mm.aa)				
20	<space></space>	20 HEX				
21-25	** **	Heure (hh:mm)				
26	<space></space>	20 HEX				
27-31	****	Base du plafond nuageux 1, voir section 9.3				
32	<space></space>	20 HEX				
33-37	****	Base du plafond nuageux 2				
38	<space></space>	20 HEX				
39-43	****	Base du plafond nuageux 3				
Octet	Valeur ¹	Description				
--------	---------------------	--	--	--	--	--
44	<space></space>	20 HEX				
45-48	***	Profondeur de pénétration du faisceau laser dans la 1re couche de nuages, voir section 9.4				
49	<space></space>	20 HEX				
50-53	****	Profondeur de pénétration du faisceau laser dans la 2e couche de nuages				
54	<space></space>	20 HEX				
55-58	****	Profondeur de pénétration du faisceau laser dans la 3e couche de nuages				
59	<space></space>	20 HEX				
60-64	****	Visibilité verticale, voir section 9.7				
65	<space></space>	20 HEX				
66-70	****	Portée de détection maximale, voir section 9.6				
71	<space></space>	20 HEX				
72-75	+***	Décalage de la hauteur des nuages (altitude)				
76	<space></space>	20 HEX				
77, 78	**	Unité (ft/m), ft ou m <space></space>				
79	<space></space>	20 HEX				
80, 81	**	Sky Condition Index (SCI, indice d'état du ciel), voir section 9.11				
82	<space></space>	20 HEX				
83-90	*****	État du système : Code d'état 32 bits ; voir section 8.5				
91	<space></space>	20 HEX				
92, 93	**	Somme de contrôle (complément à deux, exprimé en code hexadécimal, de la somme des octets 0 à 96, à l'exclusion des octets 92 et 93)				
94	<cr></cr>	0D HEX				
95	<lf></lf>	0A HEX				
96	<eot></eot>	04 HEX				

Tableau 8 Format du télégramme standard ; * = caractère quelconque.

Jusqu'à trois couches de nuages sont spécifiées dans le télégramme standard. Si moins de trois hauteurs des nuage sont détectées, le message **NODET** apparaît dans les autres champs. Si aucune profondeur de pénétration des nuages n'est déterminée, le message **NODT** apparaît dans les champs correspondants.

Une valeur **NODET** est également entrée dans les champs lorsque l'algorithme ne peut pas calculer les valeurs suivantes :

- Visibilité
- Portée de détection maximale

Si les valeurs ne peuvent pas être déterminées à cause d'une erreur de l'instrument, ces champs sont remplis avec un signe moins « - » ou une barre oblique « / ». Pour des informations détaillées sur le type d'erreur de l'instrument, reportez-vous aux codes d'état (voir 8.5 Codes d'état).

Correction de la hauteur des nuages mesurée

La hauteur des nuages est normalement mesurée à partir du bas de l'appareil. Si le paramètre « altitude(m) » est défini sur une valeur autre que zéro et que « usealtitude » est défini sur 1, la hauteur des nuages est corrigée en fonction de ce facteur. Un axe de hauteur absolue est utilisé à la place de l'axe de hauteur relative. Dans les données NetCDF, la variable CHO indique si le paramètre « usealtitude » est défini.

8.3.4 Télégramme de données étendu

Le télégramme de données étendu comporte 240 octets lorsque la valeur par défaut est sélectionnée pour le nombre de couches de nuages sorties, voir Tableau 9. Le nombre de couches de nuages est

spécifié dans le paramètre « Layer (NoL) », voir Tableau 4. Dans le télégramme de données étendu, un point-virgule (3B HEX) est utilisé comme séparateur à la place de l'espace (20 HEX).

Octet	Valeur ¹	Description
0	<stx></stx>	20 HEX
1	Х	
2	1	
3, 4	ТА	
5	;	3B HEX
6	8	
7	-	3B HEX
8-10	***	Intervalle de sortie [s]
11	- ,	3B HEX
12-19	** ** **	Date (jj.mm.aa)
20	-	3B HEX
21-28	**.**.**	Heure (hh:mm:ss)
29	-	3B HEX
30	*	Nombre de couches
31	-	3B HEX
32-36	****	Couche de nuages 1 (CBH)
37	-	3B HEX
38-42	****	Couche de nuages 2 (CBH)
43	-	3B HEX
44-48	****	Couche de nuages 3 (CBH)
49	-	3B HEX
50-54	****	Profondeur de pénétration du faisceau laser dans la 1re couche de nuages (CPD), ATTENTION : étendu à 5 chiffres
55	-	3B HEX
56-60	****	Profondeur de pénétration du faisceau laser dans la 2e couche de nuages (CPD), ATTENTION : étendu à 5 chiffres
61	;	3B HEX
62-66	****	Profondeur de pénétration du faisceau laser dans la 3e couche de nuages (CPD), ATTENTION : étendu à 5 chiffres
67	-	3B HEX
68-72	****	Visibilité verticale (VOR)
73	;	3B HEX
74-78	****	Portée de détection maximale (MXD)
79	;	3B HEX
80-83	****	Décalage de la hauteur des nuages / altitude (m) ou (ft)
84	. ,	3B HEX
85-86	**	Unité en m ou ft
87	- ,	3B HEX
88-89	**	Indice de précipitation / Sky Condition Index (SCI, indice d'état du ciel)
90	,	3B HEX
91-98	****	État du système : Code d'état 32 bits, voir 8.5 Codes d'état
99	;	3B HEX
100-101	**	Numéro d'identification RS485 du CHM 15k dans le système de bus RS485, erreur 16

Octet	Valeur ¹	Description		
102	;	3B HEX		
103-111	CHMAAnnnn	Nom de l'appareil (AA pour l'année, nnnn pour le numéro de série)		
112	;	3B HEX		
113-117	****	Écart type couche de nuages 1 (CBE)		
118	;	3B HEX		
119-123	****	Écart type couche de nuages 2 (CBE)		
124	•	3B HEX		
125-129	****	Écart type couche de nuages 3 (CBE)		
130	•	3B HEX		
131-134	****	Écart type de la profondeur de pénétration du faisceau laser dans la 3e couche de nuages (CBE)		
135	;	3B HEX		
136-139	****	Écart type de la profondeur de pénétration du faisceau laser dans la 2e couche de nuages (CBE)		
140	;	3B HEX		
141-144	****	Écart type de la profondeur de pénétration du faisceau laser dans la 3e couche de nuages (CBE)		
145	;	3B HEX		
146-150	****	Écart type de la visibilité verticale (VOE)		
151	;	3B HEX		
152-155	****	Version du logiciel FPGA		
156	;	3B HEX		
157-160	****	Version du logiciel pour le traitement du signal OMAP		
161	;	3B HEX		
162-163	**	État du système : « OK » ou « ER »		
164	•	3B HEX		
165-168	****	Température extérieure (Kelvin x 10)		
169	,	3B HEX		
170-173	****	Température intérieure (Kelvin x 10)		
174	,	3B HEX		
175-178	****	Température du détecteur (Kelvin x 10)		
179	;	3B HEX		
180-183	****	Tension de commande du régulateur (Volts x 10)		
184	;	3B HEX		
185-188	****	Hauteur d'impulsion test		
189	;	3B HEX		
190-195	*****	Durée de fonctionnement du laser (h)		
196	;	3B HEX		
197-199	***	État de la fenêtre		
200	;	3B HEX		
201-205	****	Taux de répétition du laser (PRF) (5 chiffres)		
206	;	3B HEX		
207-209	***	État du récepteur		
210	;	3B HEX		
211-213	***	État de la source lumineuse		
214	;	3B HEX		
215-219	****	Couche d'aérosol 1		

Octet	Valeur ¹	Description
220	;	3B HEX
221-225	****	Couche d'aérosol 2
226	•	3B HEX
227	*	Indice de qualité de la couche d'aérosol 1
228	;	3B HEX
229	*	Indice de qualité de la couche d'aérosol 2
230	•	3B HEX
231	*	BCC ; niveau de couverture de la couche de nuages inférieure
232	•	3B HEX
233	*	TCC; niveau de couverture global
234	;	3B HEX
235-236	**	Somme de contrôle (complément à deux de la somme des octets 0 à 239 exprimée en code hex, à l'exclusion des octets 235 et 236)
237	<cr></cr>	0D HEX
238	<lf></lf>	0A HEX
239	<eot></eot>	04 HEX

Tableau 9 Format du télégramme de données étendu (voir aussi Tableau 10); * = caractère quelconque.

Pour les écarts types indiqués des différentes tailles, les mêmes valeurs d'exception « NODET / NODT / --- » s'appliquent que pour les tailles de base correspondantes (voir *8.3.3 Télégramme* de données standard).

Autres paramètres du système

Les paramètres du système pour l'évaluation des données, y compris la profondeur de pénétration, sont décrits dans le chapitre 9 Évaluation des données / algorithme SCA.

Désignation	Description
Température extérieure	La température extérieure est mesurée sur la partie inférieure de l'appareil. Les valeurs de mesure sont affichées en Kelvin x10. Tolérance aux pannes +5 K
Température intérieure	Température mesurée sur le capteur : affichage en Kelvin x 10, tolérance aux pannes ±2 K
Température du détecteur	Température mesurée sur le capteur : affichage en Kelvin x 10, tolérance aux pannes ±2 K
NN1	Non affecté
NN2	Non affecté
Durée de fonctionnement du laser (h)	Durée de fonctionnement du laser en heures
État de la fenêtre	Degré d'encrassement de la fenêtre en pour cent 100 = vision claire, 0 = opaque
Taux de répétition du laser	Nombre d'impulsions laser dans l'intervalle de mesure (7 chiffres)
État du récepteur	Évaluation de l'état du chemin optique et du récepteur 100 = sensibilité maximale 0 = plus aucune sensibilité
État de la source lumineuse	Évaluation de la stabilité et de durée de vie de la source de lumière

Température, stabilité actuelle, taux de répétition ;
100 % = valeur de départ, ≤ 20 % = le laser s'éteint

Tableau 10 Désignations dans le télégramme de données étendu

8.3.5 Télégramme de données brutes

Les données brutes sont sorties au format NetCDF (pour une description, voir 8.4 Structure du format NetCDF). NetCDF est un format binaire. Pour une transmission via RS485 / RS232, une transformation en un code ASCII 7 bits (plage 21 à 60 HEX) avec UUencode est nécessaire, afin que les caractères spéciaux tels que <STX> ou <EOT> puissent être traités.

La taille du fichier NetCDF d'un enregistrement de données brutes est d'environ 14 kilo-octets. La conversion UUencode produit 20 kilo-octets de données ASCII qui doivent être transférées. Avec une vitesse de transmission de 9600 bits/s, la transmission prend environ 16 secondes. La sortie automatique du télégramme de données brutes est limitée à certaines combinaisons intervalle de reporting/débit en bauds, comme décrit dans le Tableau 11.

N° de la vitesse de transmission	Débit en bauds [bits/s]	Intervalle d'enregistrement [dt(s)]
0	1200	impossible
1	2400	impossible
2	4800	≥ 40 s
3	9600	≥ 20 s
4	19200	≥ 10 s
5	38400	≥5 s
6	57600	pas d'autres limitations
7	115200	pas d'autres limitations

Tableau 11 Débit en bauds - Limitations de l'intervalle d'enregistrement.

Tableau 12 décrit la structure des données supplémentaires du télégramme de données brutes.

Octet	Valeur ¹	Description				
0-238		Exactement comme dans le télégramme de données étendu (pour 3 couches de nuages)				
239	<cr></cr>	0D HEX				
240	<lf></lf>	0A HEX				
241-(eeee-5)		Données brutes au format ASCII (UUencode)				
eeee-4 eeee-3	**	Somme de contrôle (complément à deux, exprimé en code hexadécimal, de la somme des octets 0 à eeee, à l'exclusion des octets eeee-4 et eeee-3)				
eeee-2	<cr></cr>	0D HEX				
eeee-1	<lf></lf>	0A HEX				
eeee	<eot></eot>	04 HEX				

Tableau 12 Format du télégramme de données brutes ; * = caractère quelconque.

Les lignes avec les données brutes ont la structure suivante, conforme à la norme UUencode : Ligne 1 :

begin 644 YYYYMMDDhhmmss_[Location]_[Device ID].nc<CR><LF> Ligne 2 :

Le caractère * représente un caractère ASCII UUencode dans la plage HEX 21-60. Le « M » (HEX 4D) au début des lignes de données représente le nombre d'octets de données sur cette ligne, également codé avec UUEncode :

- 4D correspond au nombre HEX 2D = 45 décimal.

Selon la conversion UUencode 4/3, ces 45 octets sont codés en 60 ($60 = 45/3 \times 4$) caractères ASCII, qui suivent le « M ». La dernière ligne est une exception, car les derniers octets, qui sont généralement inférieurs à 45, sont codés.

L'exemple ci-dessus indique « E » (HEX 45, HEX 25 décodé = 37 décimal) ; viennent ensuite, par conséquent, encore 37 octets de données brutes. Le résultat de l'encodage 4/3 (arrondi à un multiple de 4 caractères), cependant, donne 52 (52 = (37/3 arrondi) x 4) caractères ASCII. La dernière ligne avec « end » margue la fin des données UUencode.

Exemple pour le nom de fichier sur la ligne 1 :

YYYYMMDDhhmmss_[Location]_[DeviceID].nc

correspond, par exemple, à 20060331123730_Berlin_CHM060003.nc (voir aussi 8.4.3) Signification :

- Appareil CHM060003 à Berlin, données du 31.03.2006, 12:37:30.

8.3.6 Autres télégrammes de données

La structure des télégrammes de données est définie dans un fichier « telegram.xml ». Ce fichier peut être téléchargé via l'interface Web en mode Superuser, puis modifié et chargé à nouveau en mode Serviceuser.

Certains télégrammes utilisateur sont déjà prédéfinis dans le firmware :

- Télégramme 4 : télégramme 2 + état du ventilateur et du chauffage et les 8 champs de commentaire (COM à CM7). La longueur du télégramme est variable, car les commentaires n'occupent que l'espace correspondant à leur longueur.
- Télégramme 5 : télégramme 1 + affichage différent du paramètre « altitude(m) » + état du ventilateur et du chauffage
- Télégramme 8 : télégramme de données CT25k 1 de Vaisala
- Télégramme 9 : télégramme de données CT25k 6 de Vaisala

Une description séparée est disponible pour les télégrammes utilisateur prédéfinis. Ces télégrammes peuvent changer.

8.4 Structure du format NetCDF

8.4.1 Général

Le célomètre sauvegarde tous les profils de rétrodiffusion mesurés dans un fichier journalier dans le format NetCDF (Network Common Data File). La capacité de stockage de la carte SD 8 Go interne permet de conserver les fichiers pendant environ un an. Les fichiers sont accessibles via une interface Web (connexion LAN). Dans un cas de service « Communication interrompue », les données concernées peuvent être examinées et retracées. En outre, les données brutes d'une seule mesure peuvent être appelées sous forme d'un télégramme de données brutes via l'interface RS485 ou LAN. L'exploitation n'inclut pas la transmission de plusieurs mesures via RS485, car cela aurait une incidence négative sur l'ordre chronologique dans ce mode. Comme la vitesse de transmission dépend de la résolution temporelle des données mesurées et des paramètres de l'interface RS485, cette transmission prendrait

trop de temps. Un fichier NetCDF journalier avec des intervalles de mesure dt(s)=30s aura une taille approximative de 12 Mo. Après basculement vers une résolution temporelle de 15 s, les fichiers journaliers auront une taille de 24 Mo. Pour l'interface LAN, un accès direct aux fichiers journaliers, aux fichiers de 5 min (mode AFD (ftp)) et aux fichiers individuels est possible à la demande.

8.4.2 Principes de base

NetCDF propose une interface indépendante de la plate-forme informatique pour le stockage et la lecture de données scientifiques. Celle-ci a été développée par Unidata, un projet financé par la National Science Foundation (<u>http://www.unidata.ucar.edu</u>). Chaque enregistrement contient des explications relatives au contenu stocké.

Le célomètre stocke toutes les données d'une journée dans un fichier ou, dans le cas du mode ftp, dans des fichiers de 5 min. Le temps utilisé est le temps universel coordonné (UTC). En mode standard (RS485), le CHM 15k transmet un télégramme de données brutes avec un seul profil de rétrodiffusion et l'ensemble des variables et attributs descriptifs dans le format NetCDF. Les télégrammes de données brutes pour une journée peuvent être fusionnés dans un fichier journalier.

8.4.3 Noms de fichiers

Fichier journalier :	YYYYMMDDhhmmss_ [Location]_[DeviceID].nc
Données brutes dans le télégramme RS485 :	YYYYMMDDhhmmss_[Location]_[DeviceID].nc
Données brutes avec une résolution temporelle de 5 minutes pour le mode ftp (AFD)	YYYYMMDDhhmmss_[Location]_[DeviceID]_hhmm_Index.nc

Longueurs des noms de fichiers

Pour un transfert de fichiers exempt de problèmes, les normes ISO doivent être respectées dans leur forme étendue. La longueur des noms de fichiers ne doit pas dépasser 31 caractères. Pour la structure des fichiers journaliers avec [Date]_[Location]_[DeviceID]_[Index].nc (8_5_9_3.2=31 caractères), cela implique que la variable « location » ne comporte pas plus de 5 caractères.

8.4.4 Structure du format

Dans le format NetCDF, les valeurs à stocker sont définies par des dimensions, des variables et des attributs. Le contenu des tableaux suivants, du Tableau 13 au Tableau 15, décrit les désignations utilisées.

Dimensions

Dimension	Description	Par défaut
time	Nombre de profils de rétrodiffusion mesurés dans un fichier NetCDF	ILLIMITÉ
range	Nombre de points mesurés et stockés dans des profils de rétrodiffusion au format NetCFD avec une résolution de 5 à 30 m selon le réglage, par défaut 15 m.	534
range_hr	Nombre de points stockés dans le profil de rétrodiffusion NetCFD haute résolution avec une résolution de 5 m	32
layer	Nombre de couches de nuages transmises dans des télégrammes et stockées dans des fichiers NetCDF	3

Tableau 13 Dimensions dans le fichier NetCDF.

Attributs globaux

Attribut	Description	Туре
title	Titre de la représentation graphique, ici « Lufft Berlin, CHM 15 ».	Text
source	voir device_name (conservé pour des raisons de compatibilité)	Text
device_name	Numéro de série, nom d'appareil de l'instrument	Text
serlom	Numéro de série de l'unité de mesure, p. ex., TUB080022	Text
day	Jour du mois où les données ont été mesurées.	int
month	Mois sous forme de numéro, janvier = 1, …	int
year	Année pendant laquelle les données ont été enregistrées, p. ex., 2019	int
location*	Emplacement / site de mesure	Text
institution*	Institution ou société	Text
wmo_id*	ID de station WMO	int
software_version	Noyau Linux, logiciel FPGA, firmware	Text
comment*	Commentaire descriptif	Text
overlap_file	Nom / heure de la fonction de correction de chevauchement utilisée pour générer les variables bêta	Text

Tableau 14 Attributs globaux dans le fichier NetCDF ; *réglages définis par l'utilisateur.

Variables

Variable	Туре	Dim.	Attribut		
			Unité	Description longue	Mise à l'échelle
time	double	time	secondes depuis 1904- 01-01 00:00:00.000 00:00	Heure de fin de la mesure (UTC, temps universel coordonné)	
range	float	range	m	Distance de mesure par rapport à l'instrument (indépendante de la direction et de la hauteur du lieu d'installation)	
range_hr	float	range_hr	m	Distance de mesure par rapport à l'instrument pour une haute résolution	
layer	int	layer		Indice des couches	
latitude	float		degrés_nord	Latitude du lieu d'installation	
longitude	float		degré	Longitude du lieu d'installation	

Variables

Variable	Туре	Dim.	Attribut			
			Unité	Description longue	Mise à l'échelle	
azimuth	float		degré	Angle de zénith de l'instrument (orientation du laser)		
zenith	float		degré	Angle de zénith de l'instrument (orientation du laser)		
altitude	float		m	Altitude d'installation de l'instrument au-dessus du niveau de la mer		
wavelength	float		nm	Longueur d'onde laser en nm		
average_time	int	time	ms	Durée moyenne par entrée		
range_gate	float		m	Résolution spatiale de la mesure		
range_gate_hr	float		m	Résolution spatiale de la mesure haute résolution		
life_time	int	time	h	Durée de vie du laser		
error_ext	int	time		Code d'état 32 bits		
state_laser	byte	time	pour cent	Indice de qualité du laser		
state_detector	byte	time	pour cent	Qualité du détecteur de signal		
state_optics	byte	time	pour cent	Indice de qualité optique		
temp_int	short	time	К	Température à l'intérieur du boîtier	0,1	
temp_ext	short	time	К	Température à l'extérieur du boîtier	0,1	
temp_det	short	time	к	Température du détecteur	0,1	
temp_lom	short	time	К	Température de l'unité de mesure	0,1	
laser_pulses	int	time		Nombre moyen d'impulsions laser d'une mesure (lp)		
p_calc	short	time	nombres	Impulsion de calibrage (normalisation de l'unité de mesure avec le temps)	0,00001	
scaling	float			Facteur de mise à l'échelle (normalisation des unités de mesure entre elles) (cs)		
base	float	time	nombres	Hauteur de la ligne de base du signal brut (influencé principalement par la lumière du jour) (b)		
stddev	float	time	nombres	Écart type du signal brut		

Variables

Variable	Туре	Dim.	Attribut		
			Unité	Description longue	Mise à l'échelle
beta_att	float	time range		Signal de rétrodiffusion normalisé corrigé en fonction de la portée ((P_raw / lp) - b) / (cs * o(r) * p_calc) * r * r, avec P_raw = sum(P_raw_hr) * range gate hr / range gate	
beta_att_hr	float	time range_hr		Signal de rétrodiffusion normalisé corrigé en fonction de la portée (haute résolution) ((P_raw_hr / lp) - b) / (cs * o(r) * p_calc) * r * r	
pbl	short	time layer	m	Couches d'aérosol	
pbs	byte	time layer		Indice de qualité pour les couches d'aérosol (1 : bonne 9 : mauvaise)	
tcc	byte	time		Niveau de couverture (global)	
bcc	byte	time		Niveau de couverture de la couche de nuages inférieure	
sci	byte	time		Sky Condition Index (SCI, indice d'état du ciel) (0 : pas de précipitations, 1 : pluie, 2 : brouillard, 3 : neige, 4 : précipitations ou particules sur la vitre de la fenêtre)	
vor	short	time	m	Visibilité verticale	
voe	short	time	m	Imprécision de la visibilité verticale déterminée	
mxd	short	time	m	Portée de détection maximale	
cbh	short	time layer	m	Hauteur de la base du plafond nuageux	
cbe	short	time layer	m	Imprécision de la base du plafond nuageux calculée	
cdp	short	time layer	m	Profondeur de pénétration des nuages	
cde	short	time layer	m	Imprécision de la profondeur de pénétration des nuages calculée	
cho	short		m	Décalage de hauteur (pris en compte dans cbh, mxd, vor et pbl ; correspond à altitude lorsque usealtitude=1, sinon 0)	
nn1	short	time		nn1	
nn2	short	time		nn2	

Variables

Variable	Туре	Dim.	Attribut				
			Unité	Description longue	Mise à l'échelle		
nn3	short	time		nn3			

Tableau 15 Variables dans le fichier NetCDF.

8.5 Codes d'état

Il existe deux variantes de code d'état, chacune reflétant l'état de l'instrument sous la forme d'un nombre de 32 bits. Le Tableau 16 répertorie la signification des différents bits du code d'état connu du CHM 15k. Cette variante de code d'état est sortie dans l'interface Web et dans le fichier NetCDF. Pour la sortie dans les télégrammes de données, par exemple, dans les caractères 83 à 90 du télégramme standard ou les caractères 91 à 98 du télégramme étendu (voir Tableau 8 et Tableau 9), le code d'état croissant est également disponible au choix, voir section 8.5.1.

Les codes d'état sont représentés sous forme de nombres hexadécimaux à huit chiffres. Les bits non définis signifient que la partie correspondante fonctionne correctement. Les bits définis indiquent des erreurs, des avertissements, des informations ou des initialisations en cours, p. ex., juste après la mise en marche.

Bit	Hex	Туре	Erreur		
0	1	Erreur	Erreur : qualité du signal		
1	2	Erreur	Erreur : enregistrement du signal		
2	4	Erreur	Erreur : valeurs du signal nulles ou non valides		
3	8	Erreur	Erreur : la détermination de la version de la carte mère a échoué (biais APD)		
4	10	Erreur	Erreur : création d'un nouveau fichier NetCDF		
5	20	Erreur	Erreur : écriture / ajout dans le fichier NetCDF		
6	40	Erreur	Erreur : impossible de générer / transmettre le télégramme RS485		
7	80	Erreur	Erreur : carte SD manquante ou défectueuse		
8	100	Erreur	Erreur : le contrôle de la haute tension du détecteur a échoué / câble défectueux ou manquant		
9	200	Avertissement	Avertissement : la température du boîtier intérieur est en dehors de la plage		
10	400	Erreur	Erreur : erreur de température de l'unité de mesure		
11	800	Erreur	Erreur : déclencheur du laser non reconnu ou laser désactivé pour des raisons de sécurité		
12	1000	Erreur	Erreur : le firmware ne correspond pas à la version de l'UC		
13	2000	Erreur	Erreur : contrôleur du laser		
14	4000	Erreur	Erreur : température de la tête laser		
15	8000	Avertissement	Avertissement : remplacer le laser – vieillissement		
16	10000	Avertissement	Avertissement : qualité du signal – niveau de bruit élevé		
17	20000	Avertissement	Avertissement : fenêtres encrassées		
18	40000	Avertissement	Avertissement : traitement du signal		
19	80000	Avertissement	Avertissement : mauvais alignement du détecteur de laser ou fenêtre du récepteur encrassée		
20	100000	Avertissement	Avertissement : système de fichiers, réparation des secteurs défectueux par fsck		
21	200000	Avertissement	Avertissement : réinitialisation du débit en bauds/mode de transfert RS485		

Bit	Hex	Туре	Erreur			
22	400000	Avertissement	Avertissement : problème d'AFD			
23	800000	Avertissement	Avertissement : problème de configuration			
24	1000000	Avertissement	Avertissement : température de l'unité de mesure			
25	2000000	Avertissement	Avertissement : température extérieure			
26	4000000	Avertissement	Avertissement : température du détecteur en dehors de la plage			
27	8000000	Avertissement	Avertissement : sortie laser générale			
28	1000000	Remarque	Remarque : nombre de couches (NOL)>3 et télégramme sélectionné			
29	20000000	Remarque	Remarque : l'instrument a été redémarré			
30	4000000	Remarque	Remarque : mode veille activé			

Tableau 16 Codes d'état/bits d'état.

Les bits qui n'ont pas encore été utilisés sont définis sur 0 par défaut, de sorte que le code d'état hexadécimal 0 indique la disponibilité opérationnelle complète du CHM 15k.

8.5.1 Codes d'état croissants

Un code d'état supplémentaire a été mis en œuvre en 2018. Il est subdivisé en huit groupes :

- 1. Configuration
- 2. Transmission et stockage des données
- 3. Températures
- 4. Calcul / traitement dans l'algorithme SCA (Sky Condition Algorithm, algorithme d'état du ciel)
- 5. Impulsion test du laser et des LED
- 6. Détecteur (récepteur)
- 7. Capteur d'encrassement de la fenêtre
- 8. Non disponible

À chaque groupe est assignée une position dans la représentation hexadécimale du code d'état 32 bits. Par exemple, les informations, avertissements et erreurs liés aux températures (groupe 3) se trouvent à la troisième place en partant de la droite, c'est-à-dire xxxxTxx.

Dans chaque groupe, seule l'erreur avec la priorité la plus haute, le code d'erreur le plus élevé dans le code d'état, est affichée.

Le paramètre SystemStatusMode (SSM) permet à l'utilisateur de définir quelle variante du code d'état doit être utilisée pour la sortie du télégramme. Le CHM 15k utilise les codes d'état standards par défaut.

Le Tableau 16 contient la description et la durée de vie des différents codes d'état.

Group e	Code Hex	Description de l'erreur	Durée [s]
1	Configuration	n	
	xxxx xxx0	Configuration correcte	
	xxxx xxx1	Redémarrage après réinitialisation ou redémarrage du firmware (SW)	60
	xxxx xxx2	Redémarrage après arrêt	60
	xxxx xxx3	Redémarrage après déclenchement du chien de garde (FW)	60
	xxxx xxx4	Redémarrage (p. ex., après une coupure de courant)	60
	xxxx xxx5	L'appareil fonctionne en mode veille	delete*
	xxxx xxx6	Paramètre incorrect, la configuration précédente ou corrigée est utilisée	300
	xxxx xxx7	Identifiant de format NetCDF inconnu dans le fichier de paramètres	60
	xxxx xxx8	Nombre de couches trop grand pour le télégramme 1	60
	xxxx xxx9	Les dimensions ne correspondent pas	∞
	xxxx xxxA	Aucun fichier d'overlap correct trouvé	∞
	xxxx xxxB	EEPROM défectueuse / non disponible ou câble défectueux	16
	xxxx xxxC Impossible de lire l'identifiant de la carte mère		∞
	xxxx xxxD	Le firmware ne correspond pas à la version de l'UC	∞
2	Transmission	n et stockage des données	
	xxxx xx0x	La transmission et le stockage des données fonctionnent correctement	
	xxxx xx1x	Système de fichiers FAT erroné réparé sur la carte SD	60
	xxxx xx2x	Le débit en bauds RS485 / mode de transfert a été réinitialisé	60
	хххх хх3х	Problème relatif à la distribution automatique des fichiers (AFD)	60/ 600
	xxxx xx4x	Impossible de transmettre le télégramme de données RS485	16
	xxxx xx5x	Impossible de générer le télégramme de données RS485	16
	xxxx xx6x	Erreur d'écriture dans le fichier NetCDF	60
	xxxx xx7x	Impossible de générer un nouveau fichier NetCDF	60
	xxxx xx8x	Carte SD non disponible ou défectueuse	∞
3	Température	S	
	xxxx x0xx	Les températures sont dans la plage correcte	
	xxxx x1xx	I emperature du detecteur en dehors de la plage de fonctionnement optimale (valeur de consigne -1 °C à +3 °C)	60

Group e	Code Hex	Description de l'erreur	Durée [s]
	xxxx x3xx	Température de l'unité de mesure en dehors de la plage des valeurs admissibles (25 °C à 49 °C)	60
	xxxx x4xx	Température interne en dehors de la plage des valeurs admissibles (5 °C à 50 °C)	16
	xxxx x5xx	Température extérieure en dehors de la plage des valeurs admissibles (-35 °C à 50 °C)	60
	хххх х6хх	Régulation de température de l'unité de mesure désactivée pour des raisons de sécurité	16 / ∞
	xxxx x7xx	Température du contrôleur du laser trop élevée	60
	xxxx x8xx	Température de la tête laser trop élevée ou trop basse	16
	xxxx x9xx	Température de l'unité de mesure trop élevée	16
	хххх хАхх	Température du laser en dehors de la plage de fonctionnement ou incorrecte	delete [*]
4	Calcul / traite d'état du ciel	ement dans l'algorithme SCA (Sky Condition Algorithm, a)	lgorithme
	xxxx 0xxx	Traitement OK	
	xxxx 1xxx	Problème lors du calcul de la visibilité	16 / 60
	xxxx 2xxx	Problème lors du calcul des couches d'aérosol	60
	хххх Зххх	Problème lors du calcul du niveau de couverture	60
	xxxx 4xxx	Problème lors du calcul des nuages	60
	xxxx 5xxx	Signal anormal	60
	xxxx 6xxx	Dimensionnement des données brutes incorrect	16
	xxxx 7xxx	Pas de nouvelles données	16
5	Impulsion tes	st du laser et des LED	
	xxx0 xxxx	L'impulsion test du laser et des LED fonctionne normalement	
	xxx1 xxxx	Problème général concernant le laser	60
	xxx2 xxxx	Impulsion test des LED inférieure ou égale à zéro	16
	xxx3 xxxx	Remplacer le laser (vieillissement)	60
	xxx4 xxxx	Erreur : contrôleur du laser	16
	xxx5 xxxx	Erreur : déclencheur du laser non détecté	16
	xxx6 xxxx	Laser désactivé (lié à la sécurité du laser)	16 / ∞
6	Détecteur (ré	cepteur)	
	xx0x xxxx	Le détecteur fonctionne correctement	
	xx1x xxxx	Qualité du signal – impulsion de référence basse	16
	xx2x xxxx	Mauvais alignement du récepteur ou fenêtre encrassée	60
	xx6x xxxx	16	

Group e	Code Hex	Description de l'erreur	Durée [s]				
	xx7x xxxx	Aucun signal test du laser suffisant disponible	16				
	xx8x xxxx	Aucune impulsion de fenêtre dans le signal de récepteur	16				
	xxDx xxxx	Pas de signal récepteur (défaut du détecteur ou de l'alimentation haute tension ?)	16				
	xxEx xxxx	Aucun signal récepteur (câble d'alimentation ?)	16				
	xxFx xxxx	Aucun signal récepteur (câble signal ?)	16				
7	Capteur d'encrassement de la fenêtre						
	x0xx xxxx	xxxx Fenêtre non encrassée					
	x1xx xxxx	xxx Fenêtre encrassée					

Tableau 17 Codes d'état croissants (HW : matériel, SW : logiciel, FW : firmware) ; *delete : l'erreur reste affichée jusqu'à ce que la condition qui en est à l'origine ait été éliminée.

Signification des couleurs :						
Tout OK						
Information						
	Avertissement					
	Erreur					

8.6 Mise à jour du firmware

Le logiciel système du CHM 15k peut être mis à jour via une interface Ethernet (connexion WAN / LAN). Veuillez vous reporter à la section suivante *8.7 Communication via l'interface* Web Ethernet pour des détails. Une mise à jour du logiciel nécessite un mot de passe de Superuser.

8.7 Communication via l'interface Web Ethernet

8.7.1 Vue d'ensemble de l'appareil et droits d'accès (onglet Device)

ce Viewer N	etCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	
Status				Status info			
Serial Device	CHM	15kd01					
Serial Optics	TUB0	80022					
Location	Berlin	1					
System Time (UT	C) Tue J	ul 16 14:54:42 2019					
Hardware	CHM Maint CPU MAC:	15k (8350): 000 board (8350.MCB): board (8350.MCP): EC:98:6C:0C:00:12	612 552 2				
Firmware	1.017 chm- OS: 1	' (Jun 3 2019 10:52 / art v02.13 2012-01-2 7.05.1	4.6.3) 7	Administration			Endusor
Overlap File	TUB0 (2018	80022 3-02-12 14:44:32)		Code:		<u>late</u>	Ling-user
Laser Life Time	6061	3.0					
External Tempera	ture 20.4						
Internal Temperat	ture 28.9						
Last Session	10.13	0.65.142 07/16/19 0	6:56:3				
System Status	0000	0000					
			update				

Figure 16 Interface Web

La Figure 16 présente l'écran de démarrage (onglet « Device ») après une connexion réussie avec l'instrument (pour la mise en service, voir section 7.2). Cet écran affiche des informations sur l'état actuel de l'instrument. Il est possible d'ouvrir une session en tant que Superuser ou Serviceuser.

La communication avec le CHM 15k via une connexion Ethernet est rapide, sûre et indépendante du système. Un serveur Web Apache fonctionne à l'intérieur de l'instrument. Il offre une plateforme de communication et de configuration via l'interface Web pour traiter les mises à jour du firmware, les aperçus rapides des résultats des mesures ou le téléchargement des données brutes NetCDF d'une journée entière.

En général, l'interface Web contient les droits d'accès suivants :

- Les utilisateurs finaux peuvent contrôler l'état de l'instrument.
- Les Superusers peuvent également télécharger des fichiers NetCDF, configurer l'appareil, télécharger le manuel d'utilisation et d'autres fichiers de configuration.
- Les Serviceusers peuvent actualiser le firmware, définir le numéro de série de l'appareil, télécharger le manuel de maintenance actuel et charger les fichiers de configuration.

Les informations d'état dans le répertoire de l'appareil et dans le répertoire des avertissements de processus affichent les avertissements et les mises à jour des erreurs toutes les minutes. Les codes d'état répertoriés correspondent aux codes d'état dans le Tableau 16. La page des avertissements de processus (Figure 24) fournit des informations supplémentaires pour le personnel de service de G. Lufft.

En mode Superuser ou Service, la page de démarrage contient des boutons pour mettre l'appareil sous tension/hors tension.

8.7.2 Accès aux données de mesure (fichiers NetCDF, visionneuse)

La Figure 17 affiche le répertoire des fichiers NetCDF visibles par tous les utilisateurs. En mode Superuser ou Service, ces fichiers NetCDF peuvent être téléchargés au moyen d'un double-clic.

	Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	⊠Lufft
Count: 169			Upda	ate List					
	File Name			Size [k	3]				
	201907	716_Berlin_	CHM15kd01_000.n	ıc	15349				
	20190715_Berlin_CHM15kd01_003.nc			8890					

Figure 17 Interface Web : fichiers NetCDF (Superuser).

La Figure 18 présente le contenu de l'onglet « Viewer » (Visionneuse), qui affiche les données existantes des dernières 24 heures à intervalles de 5 minutes. Un clic sur le bouton « Update » (Mise à jour) permet de mettre à jour le fichier image, mais l'opération ne peut être effectuée qu'une fois toutes les 5 minutes. Le paramètre « BackscatterMax » (Rétrodiffusion max.) dans l'onglet « Config System » (Configuration du système) (voir Figure 21) peut être modifié pour ajuster légèrement l'échelle de couleurs. La dernière mesure des nuages est mise à jour dans l'intervalle de reporting dt(s) et affichée plus haut.

Device	Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process War	nings ?	Lufft
cu	rrent values	(07:54:45)			war 1	Laver 9	Lover 2	update
clo	ud hase hei	aht [m]		La	4440	5005	Layers	
clo	oud penetrati	on depth [m]			353	74	-	
ae	rosol laver (i	m]			270	569	-	
clo	oud cover				8			
ra	nge correcte	ed back scatter / 24	4h (07:54:55)					update
12	1000m					Trans. M	451/2-34/8 4 /	
	No							
10	000m							
	64							
8	:000m							
Ū		-						
6	i000m			1				
				19 4 1 4	10001	W. T. Stable	11 1	
4	000m					Street and	State Mar	
				VI 114	i ₩''' '=	P. TRACK MOIL		
			1.1.1		8 (1997) - C			
2	:000m							
		, ale	4		1000			
	0m	-20h	-1	5h	-10h	-5h	Ob	
		2011	-1					

Figure 18 Interface Web : onglet Viewer (Visionneuse).

8.7.3 Configuration du CHM 15k (onglet Config)

Le contenu des pages de configuration (« Config System », « Config Network » et « Config RS485 ») est accessible uniquement aux Superusers et aux Serviceusers. Les paramètres peuvent également être définis via la communication RS485 et sont décrits dans la section 8.1 Liste des paramètres pouvant être définis.

Network Informat	lion			
Name		Address	Netmask	
eth0:2 (dhcp)		10.130.65.152	255.255.255.0	
eth0:1 (custom)		10.130.65.120	255.255.255.0	
eth0 (fix)		192.168.100.101	255.255.255.0	
gateways		10.130.65.2, 10.130.65.2		
ntp server		192.53.103.104		

Figure 19 Interface Web : onglet Config Network (lecture seule, mode par défaut) pour un appareil avec une adresse IP statique configurée (eth0:1 custom).

Devic	ce Viewer	NetCDF Files	Config System	Config Network	Config RS485	Process Warnings	?	S Lufft
	Network Inform	nation						
	Name			Address		Netmask		
	eth0:2 (dhcp)							
	eth0:1 (custom)			10.130.65.120		255.255.25	55.0	
	ethu (fix)			192.168.100.10	1	255.255.25	55.0	
	gateways			10.130.65.2				
	ntp server			192.53.103.1	104			
							updat	<u>e</u>
	DhcpMode	guration	0				set	
	Direptilogo		Ť					
	IPAddress		10.130.65	.120			set	
	Netmask		255.255.2	55.0			set	
	Gateway		10.130.65	.2			set	
	D							
	Disserver						sei	
							restart netwo	<u>rk</u>
	NtpMode		1				set	
	NtpServer		192.53.10	3.104			set	
	LanTelegramN	umber	2				set	
	LanTransferMo	de	1				set	
	LanPort		11000				set	
	HttpPort		80				set	
	AFD Configura	tion						
	AfdMode	1					set	
	Download AFD	<u>dir config</u>						
	Upload new AF Browse	D dir_config: No file selected.	send					

Figure 20 Interface Web : onglet Config Network (mode Service).

La Figure 19 présente l'onglet « Config Network » (Configuration réseau) d'un appareil avec une adresse IP statique dans la vue utilisateur par défaut. Dans la section Network Configuration (Configuration du réseau) de la vue Superuser / Serviceuser (Figure 20), l'adresse IP statique (eth0: 1 défini par

l'utilisateur), le masque de réseau et la passerelle peuvent être ajustés en fonction des conditions locales du réseau. Pour sauvegarder les paramètres dans les fichiers de configuration du réseau et utiliser les nouveaux paramètres, il est nécessaire de redémarrer le réseau. Le redémarrage peut être déclenché par un clic sur le bouton « Restart network » (Redémarrage du réseau).

Avant de basculer en mode AFD (ftp), vous devez installer avec soin le fichier de configuration AFD. Voir 8.8 Mode pour de plus amples informations.

La Figure 21 présente le contenu de l'onglet « Config System » (Configuration système), qui permet d'accéder à des parties du système :

Viewer NetCDF Fi	les Config System	Config Network	Config RS485	Process Warnings	?	部町前
Parameter	current Value	new	/alue			
Location	Berlin				set	
Institution	NN				set	
WMOStationCode	0				set	
Comment					set	
Longitude	0				set	
Latitude	0				set	
Zenith	0				set	
Azimuth	0				set	
Altitude	0				set	
UseAltitude	0				set	
LoggingTime	15				set	
Unit	0				set	
Layer	3				set	
TimeZoneOffsetHours	0				set	
BlowerMode	0				set	
RangeResolution	3				set	
RangeStart	5				set	
RangeEnd	10000				set	
RangeHrDim	32				set	
UAPD	170000				set	
ApdControlMode	1				set	
TestMode	0				set	
Standby	0				set	
CloudDetectionMode	0				set	
BackscatterMax	4000000				set	

Figure 21 Interface Web : partie supérieure de l'onglet Config System (mode Service).

Il est toujours très utile de renseigner les champs Location, Institution, Longitude et Latitude si les données sont examinées et comparées avec d'autres instruments, et si le service après-vente de Lufft doit identifier des problèmes.

Pour des raisons de sécurité, certains paramètres en mode Superuser ne sont pas répertoriés ici. Plus bas sur la même page, les mises à jour du firmware peuvent être chargées sur l'instrument en mode Superuser (Figure 22). Les nouveaux fichiers du firmware sont emballés dans des fichiers zip de sauvegarde et doivent être chargés dans ce format. Les nouvelles versions du firmware sont publiées sur le site Web de Lufft. Une liste des versions diffusées précédemment est jointe au présent manuel dans la section 11.2.

UTC Time [Format: MMDDHHmmYYYY (i.E. 061013162010 for Jun 10 13:16:00 2010)]	set
Download current settings	
Determine Reference Values	
Change Superuser password	
Reset settings to factory defaults	
Format SD card	
Update firmware: You need a version for CPU 552, e.g. 'chm_0_734_552.zip'. Browse No file selected. send	

Figure 22 Interface Web : section inférieure de l'onglet Config System (mode Service).

La Figure 23 représente la page « Config RS485 ». Pour des raisons de sécurité, la fonction de chargement est désactivée pour les nouveaux formats de télégramme. Si vous souhaitez installer vos propres télégrammes, contactez Lufft.

100	VICWCI	Netopr Files	Comig System	Coming retwork	Coning R0400	riocess wannings	1		
Parame	eter		current Valu	e n	ew Value				
RS4851	Number		16	(set	
Baud			3	[set	
BaudAft	terError		3	[set	
Transfe	rmode		1	[set	
Transfe	rmodeAfterE	Error	1	(set	
lgnorCh	nars		06	[set	
MaxCro	ssTalkChars	3	5	(set	
TimeOu	tRS485(s)		30	[set	
wnload	current tele	gramformat descr	iption						
ownload	i current tele	gramformat descr	iption						

Figure 23 Interface Web : onglet Config RS485 (mode Service).

8.7.4 Messages d'erreur et d'état (onglet Process Warnings)

La partie supérieure de l'onglet « Process Warnings » (Avertissements de processus) dans la Figure 24 est principalement utilisée par le service après-vente de Lufft dans une assistance de second ou troisième niveau pour identifier les problèmes et les erreurs spécifiques.

La section inférieure affiche des informations sur le mode de distribution de fichiers étendu (AFD, automatic file distribution). Dans le mode AFD activé, l'état des fichiers transférés est affiché. La configuration correcte ou les erreurs rencontrées pendant la configuration avec le fichier de configuration AFD peuvent être détectées. La section AFD Status (tats AFD) n'est visible que lorsque le mode AFD est activé.

Devi	ce Viewer I	NetCDF Files	Config System	Cor	fig Network	Config RS485	Process Wa	rnings ?	12 2 12	Lufft
	Process Warning Detected as Errol	n Detected	as Warning	Code	Description	Occured (Err	ror/Warning)	Last Detected	ext. Param	
	no errors detected	1							<u>update</u>	
	AFD Status									
	Transferred Files				15					
	Transferred File S	ize			1461	780				
	Files in Queue				0					
	File Size in Queue	l.			0					
	Number of Conne	ctions			5					
	Time of last Conn	ection			Wed	Sep 12 13:30:01	2018			
	Time of last Retry				Wed	Sep 12 12:10:25	2018			
	AFD Space Used	(%)			23					
	Errors									
	Total Errors				0					
	Error Counter				0					
	Error History				000	-> Transfer succes -> Transfer succes	SS SS			

Figure 24 Interface Web : Avertissements de processus et journal des erreurs. La section AFD Status n'est visible que lorsque le mode AFD est réglé sur 1.

8.7.5 Serveur de temps

La synchronisation automatique de l'heure avec un serveur de temps (serveur NTP) n'a lieu que si le paramètre *NtpMode* est réglé sur 1 et qu'un serveur de temps valide (*NtpServer*) est défini. Le fichiers de configuration de ntpd.conf sont listés sur le serveur de temps. Le serveur préconfiguré est : 0.0.0.0.0.0 (pas un serveur de temps) et le mode du serveur de temps NTP est désactivé.

Exemple : ptbtime1ptb.de, adresse 192.53.103.108.

Il est recommandé d'utiliser cette adresse IP. Une adresse de serveur DNS valide doit être définie avant que l'adresse du serveur ne puisse être utilisée. Si le système détecte un serveur de temps, il est utilisé immédiatement.

Attention :

L'utilisateur doit éviter les réglages automatiques du temps via la commande dateheure (RS485) avec l'exécution simultanée de ntpd sur TCP/IP.

8.8 Mode AFD

Un mode de communication spécifique, le mode AFD (« automatic file distribution » – mode de distribution de fichiers étendu) est pris en charge depuis le firmware 0.52.

Il est utilisé pour envoyer automatiquement les données mesurées au format NetCDF à un serveur ftp et nécessite une connexion Ethernet active.

Le mode AFD peut être activé via l'interface Web (Figure 20) en mode Superuser. Le fichier de configuration « afdsettings » doit être téléchargé, configuré et rechargé pour répondre aux exigences locales.

AFD est préréglé pour transférer trois fichiers NetCDF de 5 minutes toutes les 15 minutes. L'utilisateur peut fusionner les fichiers NetCDF dans des fichiers de 24 heures.

Le fichier de configuration « afdsettings.text » est illustré ci-après. Le nom de fichier officiel est : « DIR_CONFIG ». Pour de plus amples informations sur les commandes répertoriées ici, voir le <u>site Web</u> <u>DWD-AFD</u>. Le signe dièse (#) est utilisé pour mettre en commentaire une commande.

Fichier de configuration « afdsettings.txt »

[directory] /tmp/afd/netcdf/afd-src

[dir options] delete unknown files 0 delete queued files 6

[files]

[destination]

[recipient] ftp://user:password@host_ip/path/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600 exec -d bzip2 %s

exec

Important lors du traitement du fichier de configuration :

Le format complet (lignes vides et retraits) du fichier afdsettings est important. Si l'exemple de fichier est téléchargé depuis le célomètre, veillez à remplacer soigneusement les différents paramètres en procédant étape par étape. « # » permet de mettre une ligne en commentaire.

Exemple de fichier « afdsetting.txt » : Serveur FTP 192.168.1.51 Sous-répertoire sur le serveur (à partir de la racine) : /home/chm_data Nom d'utilisateur : afd Mot de passe : eXample

[recipient] ftp://afd:eXample@192.168.1.51//home/chm_data/%h/%tY/%tm

[options] priority 9 create target dir time */15 * * * * lock DOT age-limit 3600 exec -d bzip2 %s

Toutes les 15 minutes, des fichiers compressés avec bzip sont transférés vers le serveur ftp dans un répertoire spécifié par /home/chm_data/hostname/year/month. Hostname « %h » est le nom de l'appareil, p. ex., CHM060001, year « %tY » et month « %tm » sont les paramètres de temps spécifiés par l'appareil. Une double barre oblique (//) après l'adresse IP indique que le chemin part du répertoire d'origine ; une seule barre oblique (/) indique que le chemin part du répertoire d'accueil FTP.

Un chemin ftp dans le répertoire Windows peut avoir l'aspect suivant :

ftp://afd:eXample@162.168.1.51/%h/%tY/%tm.

Le fichier est stocké dans le sous-répertoire /%h/%tY/%tm du répertoire principal sur le serveur ftp. La commande « time * * * * * » envoie un fichier NetCDF de 5 minutes juste après sa création.

8.9 Télégramme via Ethernet

Les télégrammes de données peuvent être reçus non seulement par l'intermédiaire de l'interface RS485, mais également par l'intermédiaire de l'interface Ethernet. Il existe deux modes de transmission différents. Les télégrammes peuvent être interrogés individuellement (mode interrogation) ou envoyés automatiquement par le célomètre.

Pour la configuration du comportement de la sortie du télégramme via Ethernet, trois paramètres sont disponibles : « LanPort », « LanTelegramNumber » et « LanTransferMode ». Ces paramètres peuvent être définis via RS485 ou sous l'onglet « Config Network » (Configuration du réseau) de l'interface Web, voir Tableau 4.

Tous les télégrammes de données utilisateur décrits dans la section 8.3 peuvent être appelés. Le télégramme de données brutes est de plus codé avec UUEncode, comme dans le mode de transmission RS485, et doit être décodé pour pouvoir être lu.

Le célomètre (serveur) attend sur le port « LanPort » jusqu'à ce qu'une demande de connexion soit reçue de l'extérieur (du client). C'est alors seulement qu'il peut envoyer des télégrammes au client. Une telle demande peut être exécutée, par exemple, avec ncat ou telnet. Une demande d'un client à un CHM avec l'IP 192.168.100.101 et un port LanPort 11000 pourra avoir l'aspect suivant :

ncat 192.168.100.101 11000 ou telnet 192.168.100.101 11000

Sur les systèmes d'exploitation Windows, des fichiers binaires peuvent être téléchargés et installés depuis le serveur <u>https://nmap.org/download.html</u>. Ce site Web fournit également les codes binaires et les codes source pour d'autres systèmes d'exploitation.

Après une demande de connexion du client, en **mode d'interrogation**, un unique télégramme (dans le format « LanTelegramNumber » spécifié) est envoyé, puis la connexion est arrêtée par le CHM. En **mode de transfert automatique**, le CHM envoie continuellement (dans l'intervalle d'enregistrement) des télégrammes à tous les clients connectés.

8.10 Outils de fichiers NetCDF

Plusieurs outils sont disponibles pour traiter, modifier ou fusionner des fichiers NetCDF. En particulier en mode AFD, le programme ncrca.exe est très puissant pour fusionner des fichiers afin de créer des fichiers de 24 heures à partir de fichiers de 5 minutes.

La même commande permet également de fusionner des fichiers NetCDF individuels de télégrammes de données brutes en fichiers journaliers.

ncrca fait partie de l'ensemble d'outils nco et peut être téléchargé sur le site Web suivant :

http://nco.sourceforge.net

Pour les utilisateurs du système d'exploitation Windows :

L'application directe de la commande ncrca.exe sur la ligne de commande Windows est limitée par l'utilisation de caractères génériques et la longueur totale de la ligne de commande. Nous recommandons, par exemple, d'utiliser Git-bash pour résoudre ce problème.

Exemple :

La ligne de commande suivante permet de fusionner tous les fichiers NetCDF qui se trouvent dans le répertoire de données de l'appareil CHM123456 pour le 6 avril 2015. Le fichier de sortie de l'exemple est out.nc.

ncrca.exe -Y ncrcat -h data/20150406_Berlin_CHM123456*.nc out.nc

9 Évaluation des données / algorithme SCA

Le célomètre CHM 15k est un appareil laser de télédétection avec un algorithme intégré qui permet de déterminer des couches de particules et de gouttelettes dans l'atmosphère. L'algorithme intégré est globalement désigné sous le nom d'algorithme SCA (Sky Condition Algorithm, algorithme d'état du ciel). Les célomètres déterminent la limite inférieure des nuages et fournissent des informations sur la profondeur de pénétration dans le nuage. Si une autre couche de nuages ou d'aérosol peut être mesurée au-dessus de la couche de nuages inférieure, la profondeur de pénétration peut être interprétée comme l'épaisseur nuageuse. En outre, le niveau de couverture nuageuse est évalué en huitièmes du ciel. Pour les visibilités inférieures à 2 km la visibilité verticale (VOR) est calculée et sortie en complément. Un algorithme d'aérosol basé sur un algorithme d'ondelettes détecte différentes couches d'aérosol et transmet celles qui ont été détectées à l'intérieur de la couche limite de l'atmosphère. Brouillard / brume et précipitations sont détectés et transmis dans le paramètre Sky Condition Index (SCI, indice d'état du ciel).

9.1 Télédétection laser

Un laser pulsé proche de l'infrarouge sonde le ciel verticalement depuis le dessus de l'instrument jusqu'à une altitude de 15 km. Les cibles telles que les couches d'aérosol et les nuages apparaissent comme des échos avec une certaine amplitude de rétrodiffusion et un certain affaiblissement du signal. L'absorption moléculaire ainsi que la diffusion de Rayleigh par les molécules d'air est négligeable à une longueur d'onde laser de 1064 nm. La distance entre les particules diffusantes et l'instrument est calculée à partir du temps de trajet des impulsions laser.

9.2 Préparation des données mesurées

Le prétraitement des données est une tâche importante qui précède le début des différentes étapes de l'algorithme SCA. Il consiste principalement à harmoniser / normaliser les ensembles de données entre les différents systèmes CHM 15k afin d'obtenir des résultats similaires, p. ex., pour les limites inférieures des nuages, même si la sensibilité varie d'un instrument à l'autre.

Afin de normaliser chaque mesure individuelle, on détermine la sensibilité de détection avec une impulsion de lumière de référence p_{calc} . Les différences entre les appareils sont compensées par un facteur de mise à l'échelle c_s , qui est déterminé par une mesure de comparaison avec un appareil de référence. La Figure 25 représente les profils de deux appareils différents après la normalisation et le calibrage.

Figure 25 Signal de rétrodiffusion normalisé P(r) pour unité de référence (bleue) et unité de test (rouge). Un chemin horizontal avec une cible fixe à une distance de 9,4 km est utilisé pour la normalisation. À une distance de 16 km, une impulsion test est visible dans le signal.

La formule suivante est utilisée pour obtenir le signal de rétrodiffusion normalisé :

$$P(r) = \frac{P_{raw}(r) - b}{c_s \cdot O(r)} \cdot \frac{1}{p_{calc}}$$

Ici, P_{raw} correspond au signal de rétrodiffusion brut, *b* à la ligne de base, et O(r) est la fonction de recouvrement. *pcalc* et *cs* sont, respectivement, les facteurs de normalisation et de calibrage. Le signal de rétrodiffusion normalisé P(r) est multiplié par *r*² et enregistré dans la variable beta_raw à l'intérieur du fichier NetCDF.

Une autre étape de traitement consiste à déterminer les hauteurs des nuages et les couches d'aérosol. Afin de compenser la réduction du rapport signal-bruit aux altitudes élevées, le signal est moyenné avec une durée moyenne dépendante de l'altitude, comme indiqué dans la Figure 26. À des altitudes différentes, la durée moyenne varie de 15 secondes en dessous de 3 km à 300 secondes au-dessus de 6 km.

Figure 26 Exemple de moyennage sur des périodes différentes pour déterminer les hauteurs des nuages.

9.3 Limite inférieure des nuages et profondeur de pénétration

Après un prétraitement réussi, le profil de rétrodiffusion moyenné est utilisé pour identifier les échos des nuages, la pluie, le brouillard et les couches d'aérosol, et pour distinguer ces événements entre eux. La Figure 27 représente graphiquement l'intensité sur une journée, avec tous les signaux de rétrodiffusion significatifs codés en noir.

L'algorithme SCA identifie à présent les événements de précipitation et les structures d'aérosol, puis calcule les hauteurs des nuages et les profondeurs de pénétration.

Figure 27 Algorithme de détection des nuages.

9.4 Profondeur de pénétration des nuages

La profondeur de pénétration des nuages est déterminée à partir de la détection d'une limite inférieure, puis d'une d'une limite supérieure des nuages, à l'aide du niveau d'intensité du signal qui a été déterminé pour la base des nuages. En soustrayant ces valeurs, on obtient la profondeur de pénétration des nuages.

Une méthode basée sur des seuils et des gradients est employée pour contrôler le voisinage des valeurs identifiées, afin de déterminer l'incertitude de la profondeur de pénétration. La Figure 28 montre comment le processus d'évaluation est exécuté pour les paramètres des nuages.

Il faut remarquer que la limite supérieure des nuages susmentionnée n'est pas, en général, le point le plus élevé des nuages. La profondeur de pénétration et la couverture nuageuse ne sont similaires que si le célomètre détecte une autre couche de nuages au-dessus. Dans la plupart des cas, la lumière laser est diffusée dans le nuage et fortement atténuée. La cime des nuages ne peut plus être identifiée.

Figure 28 Schéma représentant le processus d'évaluation pour différents paramètres des nuages.

9.5 Paramètres pour l'évaluation des données

Un ensemble de paramètres contrôle le programme d'évaluation des données. Les données dépendantes du système sont stockées sur l'unité de mesure (LOM). Les données accessibles aux utilisateurs sont répertoriées dans le Tableau 4 et le Tableau 5.

Si l'instrument est incliné et l'angle zénithal saisi correctement, la distance par rapport aux nuages et les autres distances sont corrigées en fonction de cet angle.

9.6 Détermination de la portée de détection maximale (MXD)

La portée de détection maximale correspond à la distance maximale à laquelle les signaux importants sont encore mesurés. Elle résulte du rapport signal/bruit (S/N), en fonction de la distance. Aux altitudes en dehors de la couche limite, seuls les nuages ou les couches d'aérosol plus denses génèrent des signaux significatifs. La portée de détection maximale est calculée indépendamment de l'algorithme de détection des nuages et peut être utilisée pour contrôler le résultat, p. ex., si le célomètre ne peut détecter ni une couche de nuages ni une visibilité verticale. Le MXD peut alors être utilisé pour vérifier si le résultat « ciel clair » est correct.

9.7 Méthode pour déterminer la visibilité verticale (VOR)

La méthode pour déterminer la visibilité verticale (VOR : Vertical Optical Range) est décrite dans la norme ISO 28902-1:2012. L'utilisation de VOR par Lufft est décrite étape par étape ci-après :

Tout d'abord, toutes les sections du signal de rétrodiffusion (9.2 Préparation des données mesurées) avec un rapport signal/bruit >5 sont identifiées. Pour ces intervalles concernés, la méthode d'inversion de Klett est employée pour traiter l'affaiblissement $\alpha(r)$.

La visibilité optique verticale est la distance où l'intégrale des extinctions est égale à 3.

$$\int_0^{VOR} a(r)dr = 3$$

La portée pour le calcul de VOR est limitée à une altitude de 3 km. Les données dépendent du télégramme de données sélectionné. Dans le télégrammes standard 1 - 3, la visibilité verticale est toujours transmise, tandis que dans les télégrammes utilisateur 8 et 9, qui correspondent au télégramme de données CT25k, VOR ou la base du plafond nuageux sera transmise.

9.8 Précipitations et brouillard

Le brouillard et différents types de précipitations sont détectés par la diffusion multiple. Normalement, seuls les processus de diffusion simple sont considérés comme source du signal. Les fortes turbidités atmosphériques et les fortes densités de particules créent proportionnellement un signal plus fort qu'à l'accoutumée à proximité de l'appareil. Une intégrale au-dessus du signal dans certaines plages est utilisée pour évaluer la turbidité et les précipitations.

9.9 Hauteur de la couche de mélange

Les aérosols qui sont détectés près du sol dans la couche d'air inférieure, où la limite supérieure peut être définie comme une couche limite planétaire (onshore) et une couche limite maritime (offshore). La couche d'aérosol la plus basse identifiable à l'intérieur de la couche limite peut être interprétée comme la hauteur de la couche de mélange (MXL). La hauteur de la couche de mélange (MXL), comme toutes les structures des couches d'aérosol dans la couche limite, dépend des conditions atmosphériques et, pendant les journées ensoleillées, surtout de l'heure de la journée.

Il est possible d'identifier ces hauteurs de couche d'aérosol en analysant les signatures de gradient dans le signal de rétrodiffusion. La qualité des couches d'aérosol détectées dépend très fortement des conditions et de l'heure locales. Le Tableau 18 présente un indice décrivant la qualité des couches d'aérosol détectées en termes de haute précision et de faible incertitude.

Indice Q	Description
/ (télégramme) -1 (NetCDF)	Les données brutes disponibles sont insuffisantes pour un calcul
- (télégramme) -2 /NetCDF)	Erreur matérielle ou le système n'est pas prêt à mesurer
- (télégramme) -3 (NetCDF)	L'algorithme ne peut pas détecter les valeurs
0	Aucune couche de particules détectée (indice non calculé dans les anciennes versions du firmware)
1	Couche de particules détectée avec une précision élevée (< 50 m)
9	Couche de particules détectée, mais avec une grande incertitude et une faible précision

Tableau 18 Description de la hauteur des couches d'aérosol avec l'indice Q.

9.10 Niveau de couverture (BCC / TCC)

Le niveau de couverture nuageuse est déterminé statistiquement à partir du comportement dans le temps des bases inférieures des nuages. La couverture de la couche de nuages la plus basse (BCC : Base Cloud Cover) est alors distinguée de la somme de toutes les couches de nuages (TCC : Total Cloud Cover). Les valeurs de ces paramètres sont également enregistrées dans les fichiers NetCDF.

L'intervalle de temps considéré dépend de l'altitude (Figure 29). La fréquence des couches de nuages qui apparaissent est déterminée pour chaque intervalle d'altitude. Cet histogramme est lissé avec une fonction de pondération dépendante de l'altitude. Dans cette distribution lissée des fréquences, les crêtes (peaks) sont séparées. Toutes les limites inférieures des nuages à l'intérieur d'une crête (peak) sont regroupées dans une couche de nuages.

Les sections qui contiennent des base du plafond nuageux sont comparées au nombre total de sections coniques. Les valeurs de couverture nuageuse sont exprimées en pourcentage à partir de cette comparaison. Les niveaux de couverture finaux sont indiqués en huitièmes. Le Tableau 19 répertorie le code WMO 2700 pour l'indice de couverture nuageuse.

Huitième	Description
- (télégramme) -2 (NetCDF)	Erreur matérielle du système ou système pas encore prêt à fonctionner
/ (télégramme) -1 (NetCDF) -3 (NetCDF)	Les bases du plafond nuageux n'ont pas pu être déterminées à cause du brouillard ou pour d'autres raisons non météorologiques, ou aucune observation n'a été faite
0	Ciel clair
1	1 okta : 1/10 – 2/10
2	2 okta : 2/10 – 3/10
3	3 okta : 4/10
4	4 okta : 5/10
5	5 okta : 6/10
6	6 okta : 7/10 – 8/10
7	7 okta ou plus, mais <10/10
8	8 okta : 10/10
9	Ciel obscurci par le brouillard ou d'autres phénomènes météorologiques

Tableau 19 Niveau de couverture, code WMO 2700 et définitions en dixièmes.

Figure 29 Algorithme du niveau de couverture.

Remarque : l'intervalle de temps sélectionné pour le calcul de la couverture de nuages dépend de la zone dans laquelle une fonction de troncage des cônes est utilisée pour le calcul.

9.11 Indice SCI (Sky Condition Index, indice d'état du ciel)

Pour mieux comprendre certains événements, l'indice SCI est écrit dans le télégramme de données étendu et les fichiers NetCDF. Dans les anciens systèmes CHM, la variable était traitée comme un indice de précipitation.

Le Tableau 20 montre comment est défini l'indice.

Valeur	Description
 -2 (NetCDF)	Erreur matérielle du système ou système pas encore prêt à fonctionner (-2 dans NetCDF)
00	Pas de brouillard ni de précipitations détectés
01	de la pluie et
02	Brouillard
03	Neige ou pluie verglaçante
04	Transmission des fenêtres réduite, gouttelettes sur les fenêtres
// (télégramme) -1 (NetCDF) -3 (NetCDF)	Aucune observation n'est faite dans NetCDF, les valeurs numériques -1, -3 sont utilisées dans le télégramme à la place de //

Tableau 20 Indice SCI (Sky Condition Index).

10 Instructions relatives au nettoyage, à la maintenance et à l'entretien

En mode normal, deux LED permettent de vérifier le bon fonctionnement de l'appareil (voir Figure 30). Une LED rouge dans l'angle inférieur droit des panneaux de la fenêtre indique une défaillance de l'appareil. La LED s'allume lorsqu'une erreur matérielle ou logicielle est identifiée par le contrôleur principal. Pour des informations détaillées sur l'erreur transmise, le code d'état de l'interface Web (voir Figure 16) ou le code d'état via RS485 (voir 8.5 Codes d'état) peuvent être consultés.

Une LED verte dans l'angle inférieur droit de la fenêtre indique que l'alimentation secteur est activée. Lorsque l'appareil est en marche, cette LED doit être allumée. Si elle est éteinte, cela indique un câble débranché, le déclenchement d'un disjoncteur ou des fusibles défectueux.

10.1 Nettoyage

Les vitres de protection du boîtier intérieur du CHM 15k sont testées pour une énergie d'impact de 1 joule (IEC/EN 61010-1 : IK06).

Intervalle	Nettoyage	Commentaire / moyen
Tous les trimestres ¹	Nettoyage des fenêtres (Figure 30) : avant tout avec beaucoup d'eau et un peu de savon doux. Étaler soigneusement un peu de savon sur les fenêtres avec la main, puis rincer à l'eau. Pour finir, rincer avec de l'eau distillée.	Liquide vaisselle, eau, mains Ne pas utiliser de chiffons en microfibre pour nettoyer les fenêtres !
Si nécessaire	Retrait les dépôts dans l'espace situé au-dessous du capot du boîtier	Produits de nettoyage neutres ; chiffons en microfibre
Si nécessaire	Retrait des salissures végétales devant les grilles d'entrée des ventilateurs (à l'arrière)	Ne pas obstruer la zone d'aspiration des ventilateurs, voir Figure 31
Si nécessaire	Retrait de la neige ²	Ne pas obstruer la zone d'aspiration des ventilateurs, voir Figure 31

Tableau 21 Intervalles/mesures de nettoyage

¹ avec une charge en poussières moyenne de 25-35 μg/m³ dans l'air. ² si de la neige pénètre dans la prise d'air des ventilateurs.

Figure 30 Fenêtres à nettoyer.

La « LED erreur » rouge dans le coin inférieur droit de la fenêtre de réception.

1 : Sortie du laser sur le côté gauche, avec voyant vert dans le coin inférieur gauche

2 : Sortie du récepteur sur le côté droit, avec LED rouge

Figure 31 Ouverture de ventilation.

La zone au-dessous des ventilateurs doit être exempte de neige et de dépôts.

10.2 Intervalles et mesures de maintenance

Le Tableau 22 dresse la liste des interventions de maintenance préventive recommandées et l'intervalle pour les contrôles réguliers. Pour l'exécution des tâches de maintenance, la porte intérieure du boîtier doit être ouverte et les opérations doivent donc être effectuées par le personnel de service de G. Lufft GmbH ou par le personnel habilité et formé du client.

Pour d'autres informations détaillées sortant du cadre de ce manuel (maintenance, remplacement, détails des unités), se reporter au manuel de maintenance. Ce dernier est disponible uniquement pour les employés de G. Lufft GmbH ou le personnel spécialement formé muni d'un certificat de compétence écrit (certificat valide) pour les travaux de maintenance et d'entretien correspondants.

Si vous avez des questions ou si une procédure mentionnée dans le présent manuel ne permet pas de résoudre un problème existant, nous vous recommandons de contacter le technicien de service sur site ou G. Lufft GmbH.

Intervalle	Interventions de maintenance préventive	Commentaire
contrôles réguliers	Contrôle de l'intégrité du sac du déshumidificateur CONTAINER DRI II et remplacement de ce dernier si nécessaire	uniquement par le personnel de service
au moins une fois par an	Remplacement du sac du déshumidificateur CONTAINER DRI II	uniquement par le personnel de service
environ tous les 5 ans	En tant que mesure préventive : remplacement du joint en caoutchouc de la porte intérieure (en cas de fatigue des matériaux)	uniquement par le personnel de service
environ tous les 5 ans	En tant que mesure préventive : remplacement du conducteur parafoudre (également après un coup de foudre)	uniquement par le personnel de service
environ tous les 8 ans	En tant que mesure préventive : remplacement de la carte mère électronique et du module laser	uniquement par le personnel de service
contrôles réguliers	Contrôle de l'intégrité du sac du déshumidificateur CONTAINER DRI II et remplacement de ce dernier si nécessaire	uniquement par le personnel de service

Tableau 22 Intervalles et mesures de maintenance préventive.

11 Annexe

11.1 Version matérielle du CHM 15k

Révision	Date de lancement	Modifications	Commentaire
REV 01	01.05.2014	Matériel Lufft état 1	Première version du matériel Lufft
REV 02	01.09.2014	Mise à jour de la carte mère du CHM, nouvelle : 41.61225	ancienne 61125 nouvelle : 61225
REV 03	01.06.2015	 1) Câble DSL nouveau : 2) Câble RS485 nouveau 2x2x0,34 3) Mise à niveau du contrôleur du laser 4) Modem VDSL R4 	 1) TWINAX- Lapp#:2170050 2) Unitronic (modèle de couleurs DIN) 3) Version R1 4) MEG250AE
REV 04	1.7.2015	Nouvelle carte processeur, en raison de pièces obsolètes	8350.MCP (ancien 551, nouveau 552)
REV 05	29.7.2015	Nouvelle carte mère du CHM, en raison de pièces obsolètes sur la carte de base	8350.MCU
REV 06	1.6.2019	Améliorations importantes concernant la compatibilité électromagnétique et la sécurité	

Tableau 23 Versions matérielles (une version matérielle égale à 0 signifie que la valeur n'est pas définie).

11.2 Version du logiciel du CHM 15k

Le présent manuel correspond à version du firmware 1.020 de septembre 2019 pour le célomètre CHM 15k.

Version OS / FPGA	Description	Date de publication
OS 12.12.1 FPGA 2.13	CPU 550 : traitement de bloc défectueux mis en œuvre Réinitialisation du capteur de température ADC	Déc 2012
OS 15.06.1 FPGA 2.13	Version d'origine pour CPU version 552	Juin 2015
OS : 15.12.1 FPGA 2.13	Pilote Ethernet : résout un problème de communication dans la connexion directe, ordinateur portable – CHM15k Le nom d'hôte est défini correctement (nom d'appareil). Le nom d'hôte est utilisé par AFD « %h » et soumis à un serveur DHCP. Dans l'interface Web, il est possible d'entrer l'ip et le nom d'hôte, p. ex., CHM160122.lufft.de	Déc 2015
OS 16.05.1 FPGA 2.13	Version de mise à jour Web de 15.06.1 (même contenu que 15.12.1)	Mai 2016
OS 17.05.01 FPGA 2.13	Problème d'initialisation avec certaines cartes SD fixes	Mai 2017
--------------------------	--	----------
OS 18.10.01 FPGA 2.13	Concerne uniquement la production. (Utilisation de l'EEPROM dépendante de l'appareil (p. ex., durée de vie du laser pour CHM8k))	Oct 2018

Tableau 24 Versions du système d'exploitation (OS) / FPGA

Version du firmware	Description	Date de publication
0.723	 Correction d'un bogue NetCDF pour éviter les problèmes dans le processus ctrl 	Mar 2014
	2. prise en charge d'une nouvelle carte processeur (2015)	
	3. dernière version de Jenoptik	
0.730	 algorithme de détection des nuages mis à jour pendant les événements de précipitation 	Déc 2014
	 prise en charge du télégramme sur Ethernet, utilise à présent le port 11000 	
	 détection des couches d'aérosol moins sensible dans la plage inférieure pour éviter les objets 	
	 paramètre « range » (plage) mis en œuvre dans l'interface Web et l'interface de commande (RAR, RAS, RAE,RHD) 	
	 la détection des nuages utilise la nouvelle résolution de plage flexible pour autoriser un post-traitement précis 	
	 Range2DIM dans RangeHRDim renommé et max. réglé sur 600 points de données 	
	 ajout des numéros de série de divers composants dans EEPROM (opticconfig) 	
	8. nouveau numéro de série de la carte mère (édition 2015)	
0.732	 petits ajustements sur l'algorithme de détection des nuages (taux de fausses alertes inférieur à 100 m ; modifications concernant le lissage du signal) 	Mai 2015
	 le premier calcul de la moyenne commence à 3 km au lieu de 2,2 km, + correspond mieux pour satisfaire aux exigences du service 	
	 le nom de l'appareil (DeviceName) est préservé lors du rétablissement des paramètres par défaut. 	
	 commande permettant d'appliquer les valeurs par défaut aux paramètres supprimée de l'interface Web (sera reconçue et réintégrée dans l'avenir) 	

Version du firmware	Description	Date de publication
0.733	 révision de la carte mère et révision de la carte processeur affichées sur l'interface Web 	Juil 2015
	 bit de code d'état 12 (température du contrôleur du laser) combiné au bit 13 (verrouillage du laser) pour former le nouveau bit 13 ! 	
	3. mise à jour du firmware pour la compatibilité avec la carte processeur	
	(erreur sur le bit de code 12)	
	 baisse de la température admissible de l'unité optique laser de 62 °C à 55 °C 	
	 tolérance accrue pour l'avertissement de température APD (bit de code d'état 26), à présent 24 °C < x < 28 °C 	
0.735	 plage d'altitudes pouvant être définies élargie à [-999 m, 9999 m], valeurs négatives désormais admises 	Sep 2015
	 plage réglable pour RangeStart et RangeEnd modifiée (RangeStart de [5,3000] à [5,1000]; RangeEnd de [8000,15400] à [5500,15400]) 	
	 affichage de la durée de vie du laser corrigée (avec LaserInstallTime) sur l'interface Web et dans chmsettings.txt (même que dans le fichier NetCDF) 	
	4. nouveaux télégrammes prédéfinis : #4 (correspond à #2) et #5 (correspond à #1) avec la différence que les activités de ventilation et de chauffage sont indiquées à la fin du télégramme et l'altitude n'a pas de signe positif pour autoriser une plage d'altitudes plus large	
0.743	 L'algorithme ALH (Aerosol Layer Height) a été amélioré (pour les valeurs ALH avec un faible rapport signal-bruit) 	Juil 2016
	 Un tableau avec les mesures actuelles (cbh, cpd, alh, tcc) est affiché sous l'onglet « Viewer » (Visionneuse) de l'interface Web (affichage limité à 5 couches). 	
	 Le nom du fichier d'overlap utilisé et sa date de création sont affichés dans l'interface Web et enregistrés dans le fichier NetCDF 	
	 Les messages du télégramme CT25k Vaisala n° 1 et 6 sont inclus dans les télégrammes utilisateur 8 et 9 	
	 Fonctionnement de la carte SD adapté, CHM fonctionne en l'absence d'une carte SD 	
	 Nouveaux paramètres DhcpMode et DnsServer disponibles, le mode DHCP peut être désactivé 	
	7. Le port HTTP peut être défini	
	 Le port LAN et le mode Télégramme pour l'interrogation du télégramme via LAN peuvent être définis. 	

Version du firmware	Description	Date de publication
0.747	Veuillez noter : version 1.7 de ChmDataViewer requise !	Mai 2017
	 La valeur CloudDetectionMode actuelle est affichée dans l'attribut NetCDF « software_version » à la dernière position (p. ex., software_version = « 17.05.1 2.13 0.747 1 » pour Mode 1) 	
	 Introduction de la variante de détection des nuages « higher low clouds » (nuages bas plus élevés), utilisable avec les nouveaux paramètres CloudDetectionMode = 1 (abrégé RS485 : CDM). Redémarrage requis après modification de la valeur CloudDetectionMode. 	
	3. Correction pour traiter les créneaux horaires après définition de l'heure	
	 Pas d'affichage d'ALH (Aerosol Layer Height) au-dessus des nuages et des sous-oscillations, ni pendant les précipitations 	
	5. Gestion des emplacements avec des umlauts	
	6. Le télégramme n° 2 peut être utilisé avec jusqu'à 9 couches	
	7. Manuel : version R09 intégrée	
0.754	 Erreur du journal « APD temperature not in range » (Température d'APP en dehors de la plage) (bit 26) utilisé uniquement si PeltierMode est égal à 1 	Mai 2018
	 Réduction de la durée de vie des erreurs de lecture de la température d'APD 	
	 Mot de passe du service modifié. (Mot de passe de Superuser non modifié.) 	
	 Synchronisation du système de fichiers interne après des opérations d'écriture importantes. 	
	 Le ventilateur ne sera pas mis en marche si la température extérieure n'est pas valide. La ventilation thermique ne sera assurée que si la température intérieure est valide. 	
	 Une température du module non valide provoque une erreur dans le bit d'état 10. 	
	7. Désactiver AlhFilters en mode test. (concerne le simulateur CH)	
	 Correction : le paramètre Location peut être défini sur la valeur par défaut (NN). 	

Version du firmware	Description	Date de publication
1.000	Fusion des firmwares de CHM8k et de CHM15k sur la base des versions 0.753 et 0.754	Sep 2018
	 Introduction de l'adresse RS485 universelle 99, qui fonctionne toujours, indépendamment du paramètre RS485Number défini. 	
	 Introduction du code d'état croissant, qui sera sorti dans les télégrammes 1 et 5. 	
	 Sortie des informations d'état après le redémarrage de l'appareil (suivant la cause du redémarrage) dans le télégramme, Web et NetCDF. 	
	 Introduction de sept mémoires de commentaire supplémentaires disponibles pour les clients (32 octets chacune). Comment et Comment1-7 sont transmis à la fin du télégramme 4. Le télégramme 4 a maintenant une longueur variable. Les commentaires occupent seulement l'espace correspondant à leur longueur. Comment1-7 (CM1- CM7) peuvent être définis via RS485. 	
	 Déterminer la visibilité uniquement sur les données de l'intervalle d'enregistrement actuel. 	
	 Démarrer le moyennage des temps pour l'algorithme de détection des nuages au-dessus de 3050 m. 	
	 Type Mime pour le téléchargement de différents fichiers de paramètres (chm*, afd*, télégramme) résolu. 	
	 Correctif dans la détection des nuages (pour la version 0.727) : contrôle des dimensions 	
1.010	1. Amélioration du traitement de l'erreur de lecture de la température APD	Nov 2018
	 Compenser le débordement de LaserLifeTime du module laser dans le firmware 	
1.020	 Introduction du paramètre LanTransferMode (LTM) (0polling, 1auto), envoi automatique des télégrammes via LAN à plusieurs clients disponibles en mode 1. 	Sep 2019
	 Introduction du paramètre LanTelegramNumber (LTN) (ancien nom : LanTelegramMode) 	
	 Introduction du commutateur SystemStatusMode (SSM) (0 = normal, 1 = codes d'état croissants dans les télégrammes) (valeurs par défaut : 0 pour CHM15k, 1 pour CHM8k) 	
	 Écriture d'informations supplémentaires (adresse MAC, numéro de série de l'UC, infos d'overlap, carte mère et version de l'UC) dans chmsettings.txt lors du téléchargement 	
	 Amélioration de la mémoire interne des télégrammes pour éviter une sortie différée des télégrammes 	
	 Erreur « tubus temperature greater then 55C » (température du LOM supérieure à 55 °C) non sortie avec des valeurs négatives 	
	 Le manuel de service n'est plus disponible en téléchargement sur CHM, ceci afin de limiter la taille de la mise à niveau du firmware 	

Tableau 25 Versions du firmware.

12 Index des figures

Figure 1 Mai	rquage de sécurité	7
Figure 2 Sch	néma fonctionnel. Les nombres entre crochets correspondent à la numérotation dans la liste des pièces de rechange (fournie dans le manuel de maintenance)	13
Figure 3 Ord	ganigramme du cycle de mesure standard	14
Figure 4 Gal	barit de perçage	16
Figure 5 CH	M 15k emballé et en position de transport	17
Figure 6 CH	M 15k avec emballage en polystyrène ou carton alvéolaire	17
Figure 7 Pos	sitions de levage et protège-main (protection de la bordure)	18
Figure 8 Tra	nsport avec un diable	18
Figure 9 Élé	ments de fixation.	19
Figure 10 Sc	chéma de l'installation électrique	20
Figure 11 In	stallation électrique du CHM 15k	21
Figure 12 Ra	accordement à la terre sur le socle de l'appareil	22
Figure 13 Co	onnexion RS485 à un convertisseur de signaux	22
Figure 14 Co	onnexion DSL	22
Figure 15 Vu	ue du navigateur Firefox pour une connexion avec le CHM 15k (ici : adresse IP fixe)	25
Figure 16 Int	terface Web	53
Figure 17 Int	terface Web : fichiers NetCDF (Superuser).	54
Figure 18 Int	terface Web : onglet Viewer (Visionneuse).	54
Figure 19 Int	terface Web : onglet Config Network (lecture seule, mode par défaut) pour un appareil avec une adresse IP statique configurée (eth0:1 custom)	55
Figure 20 Int	terface Web : onglet Config Network (mode Service)	55
Figure 21 Int	terface Web : partie supérieure de l'onglet Config System (mode Service)	56
Figure 22 Int	terface Web : section inférieure de l'onglet Config System (mode Service)	57
Figure 23 Int	terface Web : onglet Config RS485 (mode Service)	57
Figure 24 Int	terface Web : Avertissements de processus et journal des erreurs. La section AFD Status n'est visible que lorsque le mode AFD est réglé sur 1	58
Figure 25 Si	gnal de rétrodiffusion normalisé P(r) pour unité de référence (bleue) et unité de test (rouge). Un chemin horizontal avec une cible fixe à une distance de 9,4 km est utilisé pour la normalisation. À une distance de 16 km, une impulsion test est visible dans le signal	61
Figure 26 Ex	cemple de moyennage sur des périodes différentes pour déterminer les hauteurs des nuages	62
Figure 27 Al	gorithme de détection des nuages	62
Figure 28 So	chéma représentant le processus d'évaluation pour différents paramètres des nuages	63
Figure 29 Al	gorithme du niveau de couverture	66
Figure 30 Fe	- enêtres à nettoyer	69
Figure 31 Ou	uverture de ventilation	70

13 Index des tableaux

Tableau 1 Versions des équipements. 8
Tableau 2 Données techniques10
Tableau 3 Commandes pour un test de fonctionnement. 24
Tableau 4 Liste des paramètres de l'appareil pouvant être configurés ;
Tableau 5 Liste des paramètres en lecture seule, accessibles via l'interface RS485 ;31
Tableau 6 Corrélation entre le numéro de la vitesse de transmission et le débit en bauds. 34
Tableau 7 Vue d'ensemble des modes de transfert35
Tableau 8 Format du télégramme standard ; * = caractère quelconque. 37
Tableau 9 Format du télégramme de données étendu (voir aussi Tableau 10); * = caractère quelconque40
Tableau 10 Désignations dans le télégramme de données étendu41
Tableau 11 Débit en bauds - Limitations de l'intervalle d'enregistrement. 41
Tableau 12 Format du télégramme de données brutes ; * = caractère quelconque41
Tableau 13 Dimensions dans le fichier NetCDF43
Tableau 14 Attributs globaux dans le fichier NetCDF ; *réglages définis par l'utilisateur.
Tableau 15 Variables dans le fichier NetCDF. 47
Tableau 16 Codes d'état/bits d'état49
Tableau 17 Codes d'état croissants (HW : matériel, SW : logiciel, FW : firmware) ; *delete : l'erreur reste affichée jusqu'à ce que la condition qui en est à l'origine ait été éliminée
Tableau 18 Description de la hauteur des couches d'aérosol avec l'indice Q64
Tableau 19 Niveau de couverture, code WMO 2700 et définitions en dixièmes. 65
Tableau 20 Indice SCI (Sky Condition Index). 67
Tableau 21 Intervalles/mesures de nettoyage69
Tableau 22 Intervalles et mesures de maintenance préventive. 71
Tableau 23 Versions matérielles (une version matérielle égale à 0 signifie que la valeur n'est pas définie).
Tableau 24 Versions du système d'exploitation (OS) / FPGA
Tableau 25 Versions du firmware. 76

a passion for precision \cdot passion pour la précision \cdot pasión por la precisión \cdot passione per la precisione \cdot a p

ZLufft